DEEP UNROLLING SHRINKAGE NETWORK FOR DYNAMIC MR IMAGING

被引:0
|
作者
Zhang, Yinghao [1 ]
Li, Xiaodi [1 ]
Li, Weihang [2 ]
Hu, Yue [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin, Peoples R China
[2] Tianjin Univ Technol, Sch Elect Engn & Automat, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
deep unrolling; dynamic MR imaging; soft thresholding; channel attention; sparsity; RECONSTRUCTION;
D O I
10.1109/ICIP49359.2023.10223077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep unrolling networks that utilize sparsity priors have achieved great success in dynamic magnetic resonance (MR) imaging. The convolutional neural network (CNN) is usually utilized to extract the transformed domain, and then the soft thresholding (ST) operator is applied to the CNN-transformed data to enforce the sparsity priors. However, the ST operator is usually constrained to be the same across all channels of the CNN-transformed data. In this paper, we propose a novel operator, called soft thresholding with channel attention (AST), that learns the threshold for each channel. In particular, we put forward a novel deep unrolling shrinkage network (DUS-Net) by unrolling the alternating direction method of multipliers (ADMM) for optimizing the transformed l1 norm dynamic MR reconstruction model. Experimental results on an open-access dynamic cine MR dataset demonstrate that the proposed DUS-Net outperforms the state-of-the-art methods. The source code is available at https://github.com/yhao-z/DUS- Net.
引用
收藏
页码:1145 / 1149
页数:5
相关论文
共 50 条
  • [31] PtychoDV: Vision Transformer-Based Deep Unrolling Network for Ptychographic Image Reconstruction
    Gan, Weijie
    Zhai, Qiuchen
    Mccann, Michael T.
    Cardona, Cristina Garcia
    Kamilov, Ulugbek S.
    Wohlberg, Brendt
    [J]. IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 539 - 547
  • [32] Deep pelvic endometriosis: MR imaging
    Marcal, Leonardo
    Nothaft, Maria Angela
    Coelho, Francisco
    Choi, Haesun
    [J]. ABDOMINAL IMAGING, 2010, 35 (06): : 708 - 715
  • [33] Deep pelvic endometriosis: MR imaging
    Leonardo Marcal
    Maria Angela Nothaft
    Francisco Coelho
    Haesun Choi
    [J]. Abdominal Imaging, 2010, 35 : 708 - 715
  • [34] Predicting Lung Tumor Shrinkage During Radiotherapy Seen in a Longitudinal MR Imaging Study Via a Deep Learning Algorithm
    Wang, C.
    Hu, Y.
    Rimner, A.
    Tyagi, N.
    Yorke, E.
    Mageras, G.
    Deasy, J.
    Zhang, P.
    [J]. MEDICAL PHYSICS, 2018, 45 (06) : E582 - E582
  • [35] DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution
    Wang, Shanshan
    Cheng, Huitao
    Ying, Leslie
    Xiao, Taohui
    Ke, Ziwen
    Zheng, Hairong
    Liang, Dong
    [J]. MAGNETIC RESONANCE IMAGING, 2020, 68 : 136 - 147
  • [36] FISTA-CSNet: a deep compressed sensing network by unrolling iterative optimization algorithm
    Liqi Xin
    Dingwen Wang
    Wenxuan Shi
    [J]. The Visual Computer, 2023, 39 : 4177 - 4193
  • [37] Fish Recognition Based on Deep Residual Shrinkage Network
    Cheng, Long
    He, Chengwan
    [J]. 2021 4TH INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION ENGINEERING (RCAE 2021), 2021, : 36 - 39
  • [38] DEEP UNROLLING FOR MAGNETIC RESONANCE FINGERPRINTING
    Chen, Dongdong
    Davies, Mike E.
    Golbabaee, Mohammad
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [39] FISTA-CSNet: a deep compressed sensing network by unrolling iterative optimization algorithm
    Xin, Liqi
    Wang, Dingwen
    Shi, Wenxuan
    [J]. VISUAL COMPUTER, 2023, 39 (09): : 4177 - 4193
  • [40] Deep Transfer Network of Knee Osteoarthritis Progression Rate Classification in MR Imaging for Medical Imaging Support System
    Antonio, Patrick Jheyd A.
    Delmo, Jen Aldwayne B.
    Sevilla, Rovenson, V
    Ligayo, Michael Angelo D.
    Montesines, Dolor L.
    [J]. 2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 285 - 289