Predicting Lung Tumor Shrinkage During Radiotherapy Seen in a Longitudinal MR Imaging Study Via a Deep Learning Algorithm

被引:0
|
作者
Wang, C. [1 ]
Hu, Y. [1 ]
Rimner, A. [1 ]
Tyagi, N. [1 ]
Yorke, E. [1 ]
Mageras, G. [1 ]
Deasy, J. [1 ]
Zhang, P. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, 1275 York Ave, New York, NY 10021 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
WE-AB-KDBR
引用
收藏
页码:E582 / E582
页数:1
相关论文
共 19 条
  • [1] Toward predicting the evolution of lung tumors during radiotherapy observed on a longitudinal MR imaging study via a deep learning algorithm
    Wang, Chuang
    Rimner, Andreas
    Hu, Yu-Chi
    Tyagi, Neelam
    Jiang, Jue
    Yorke, Ellen
    Riyahi, Sadegh
    Mageras, Gig
    Deasy, Joseph O.
    Zhang, Pengpeng
    [J]. MEDICAL PHYSICS, 2019, 46 (10) : 4699 - 4707
  • [2] Design of a Deep Learning Algorithm to Track Intrafractional Lung Tumor Motion Via the On-Board KV Imaging System
    Wang, C.
    Hunt, M.
    Zhang, L.
    Rimner, A.
    Yorke, E.
    Lovelock, D.
    Li, X.
    Li, T.
    Mageras, G.
    Zhang, P.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E372 - E372
  • [3] Siamese-Based Deep Learning for Markerless Lung Tumor Tracking During Stereotactic Radiotherapy
    Grama, D.
    Dahele, M.
    Van Rooij, W.
    Slotman, B. J.
    Gupta, D. K.
    Verbakel, W.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E111 - E111
  • [4] Deep Learning-Based Fast Volumetric Imaging for Treatment Setup During Lung Radiotherapy
    Lei, Y.
    Axente, M.
    Tian, Z.
    Wang, T.
    Roper, J.
    Kesarwala, A.
    Higgins, K.
    Bradley, J.
    Liu, T.
    Yang, X.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E604 - E605
  • [5] Fast 3D Imaging via Deep learning for Deep Inspiration Breath-hold Lung Radiotherapy
    Lei, Yang
    Tian, Zhen
    Wang, Tonghe
    Axente, Marian
    Roper, Justin
    Higgins, Kristin
    Bradley, Jeffrey D.
    Liu, Tian
    Yang, Xiaofeng
    [J]. MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2022, 12034
  • [6] Predicting tumor recurrence in patients with early-stage hepatocellular carcinoma using deep learning on baseline MR imaging
    Batra, Ramesh
    Kuecuekkaya, Ahmet
    Staib, Lawrence
    Chapiro, Julius
    [J]. AMERICAN JOURNAL OF TRANSPLANTATION, 2022, 22 : 26 - 26
  • [7] Seq2Morph: A deep learning deformable image registration algorithm for longitudinal imaging studies and adaptive radiotherapy
    Lee, Donghoon
    Alam, Sadegh
    Jiang, Jue
    Cervino, Laura
    Hu, Yu-Chi
    Zhang, Pengpeng
    [J]. MEDICAL PHYSICS, 2023, 50 (02) : 970 - 979
  • [8] Predicting lung cancer recurrence in patients within two years of curative radiotherapy via a trained machine learning algorithm
    Bryanton, Mark
    Pathak, Rima
    La Russa, Dan
    Holmes, Oliver
    Gotfrit, Ryan
    Cook, Graham
    MacRae, Robert
    Cross, Peter
    Pantarotto, Jason
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2017, 58
  • [9] Segmenting Lung Tumors on Longitudinal Imaging Studies Via Patient Specific Self Adaptive Deep Learning Models
    Wang, C.
    Tyagi, N.
    Rimner, A.
    Hu, Y. C.
    Li, G.
    Hunt, M. A.
    Mageras, G. S.
    Zhang, P.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : E552 - E552
  • [10] Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
    Kucukkaya, Ahmet Said
    Zeevi, Tal
    Chai, Nathan Xianming
    Raju, Rajiv
    Haider, Stefan Philipp
    Elbanan, Mohamed
    Petukhova-Greenstein, Alexandra
    Lin, MingDe
    Onofrey, John
    Nowak, Michal
    Cooper, Kirsten
    Thomas, Elizabeth
    Santana, Jessica
    Gebauer, Bernhard
    Mulligan, David
    Staib, Lawrence
    Batra, Ramesh
    Chapiro, Julius
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)