Influences of microjet pressure and number of microjets on the control of shock wave/boundary layer interaction

被引:5
|
作者
Xu, Hao [1 ]
Huang, Wei [1 ]
Du, Zhao-bo [1 ]
Meng, Yu-shan [1 ]
Liu, Chao-yang [1 ]
Yan, Li [2 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engineenng, Sci & Technol Scramjet Lab, Changsha 410073, Hunan, Peoples R China
[2] Acad Mil Sci, Inst Syst Engineenng, Beijing 100101, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Shock wave; boundary layer interaction (SWBLI); Microjet; Pressure ratio; Number of holes; CVP; Separation bubble; JET VORTEX GENERATORS; RAMP;
D O I
10.1016/j.ast.2023.108345
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Boundary layer separation is a common phenomenon in supersonic/hypersonic vehicles, and can adversely affect the lift coefficient. Currently, active flow control based on microjets is used to inhibit the separation of the turbulent boundary layer. The obtained results predicted by the three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations and two-equation shear stress transport (SST) k-omega both with Realizable k-epsilon turbulence models show that the control mechanism of the microjets method is the counter-rotating vortex pair (CVP) generated by the microjet mixes the low-energy flow within the boundary layer with the high-energy flow near the boundary layer. The size of the vortex core in this CVP is the key to controlling SWBLI. The vortex nucleus that is larger and closer to the wall enables better SWBLI control. A lower or higher ratio of microjet pressure to inflow static pressure increases the total volume of the separation bubble and produces a negative gain. When the ratio of the triangular microjet hole bottom edge length to the spacing between the holes is too small, leading to a deterioration in the control effect. The addition of microjets reduces the total pressure recovery coefficient.(c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Shockwave/Boundary-Layer Interaction Control on a Compression Ramp Using Steady Microjets
    Verma, S. B.
    Manisankar, C.
    AIAA JOURNAL, 2012, 50 (12) : 2753 - 2764
  • [42] Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations
    Piotr Doerffer
    Oskar Szulc
    Franco Magagnato
    JournalofThermalScience, 2003, (01) : 10 - 15
  • [43] Shock wave-boundary layer interaction in forced shock oscillations
    Piotr Doerffer
    Oskar Szulc
    Franco Magagnato
    Journal of Thermal Science, 2003, 12 : 10 - 15
  • [44] Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations
    Doerffer, Piotr
    Szulc, Oskar
    Magagnato, Franco
    JOURNAL OF THERMAL SCIENCE, 2003, 12 (01) : 10 - 15
  • [45] Passage shock wave/boundary layer interaction control for transonic compressors using bumps
    Liu, Yongzhen
    Zhao, Wei
    Zhao, Qingjun
    Zhou, Qiang
    Xu, Jianzhong
    CHINESE JOURNAL OF AERONAUTICS, 2022, 35 (02) : 82 - 97
  • [46] Passage shock wave/boundary layer interaction control for transonic compressors using bumps
    Yongzhen LIU
    Wei ZHAO
    Qingjun ZHAO
    Qiang ZHOU
    Jianzhong XU
    Chinese Journal of Aeronautics, 2022, 35 (02) : 82 - 97
  • [47] Investigation of Unswept Normal Shock Wave/Turbulent-Boundary-Layer Interaction Control
    Couldrick, Jonathan S.
    Gai, Sudhir L.
    Milthorpe, John F.
    Shankar, Krishna
    JOURNAL OF AIRCRAFT, 2009, 46 (05): : 1634 - 1641
  • [48] Swept shock wave/boundary layer interaction control based on surface arc plasma
    Yang, Hesen
    Zong, Haohua
    Liang, Hua
    Wu, Yun
    Zhang, Chuanbiao
    Kong, Yakang
    Li, Yinghong
    PHYSICS OF FLUIDS, 2022, 34 (08)
  • [49] Surrogate-based optimization on bump for shock wave/boundary layer interaction control
    Tian, Shan-shan
    Jin, Liang
    Huang, Wei
    Shen, Yang
    ACTA ASTRONAUTICA, 2023, 212 : 139 - 151
  • [50] Shock wave/boundary layer interaction control method based on oscillating vortex generator
    Wang M.
    He X.
    Wang J.
    Zhang Y.
    Wang K.
    Tan H.
    Li L.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (20):