Influences of microjet pressure and number of microjets on the control of shock wave/boundary layer interaction

被引:5
|
作者
Xu, Hao [1 ]
Huang, Wei [1 ]
Du, Zhao-bo [1 ]
Meng, Yu-shan [1 ]
Liu, Chao-yang [1 ]
Yan, Li [2 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engineenng, Sci & Technol Scramjet Lab, Changsha 410073, Hunan, Peoples R China
[2] Acad Mil Sci, Inst Syst Engineenng, Beijing 100101, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Shock wave; boundary layer interaction (SWBLI); Microjet; Pressure ratio; Number of holes; CVP; Separation bubble; JET VORTEX GENERATORS; RAMP;
D O I
10.1016/j.ast.2023.108345
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Boundary layer separation is a common phenomenon in supersonic/hypersonic vehicles, and can adversely affect the lift coefficient. Currently, active flow control based on microjets is used to inhibit the separation of the turbulent boundary layer. The obtained results predicted by the three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations and two-equation shear stress transport (SST) k-omega both with Realizable k-epsilon turbulence models show that the control mechanism of the microjets method is the counter-rotating vortex pair (CVP) generated by the microjet mixes the low-energy flow within the boundary layer with the high-energy flow near the boundary layer. The size of the vortex core in this CVP is the key to controlling SWBLI. The vortex nucleus that is larger and closer to the wall enables better SWBLI control. A lower or higher ratio of microjet pressure to inflow static pressure increases the total volume of the separation bubble and produces a negative gain. When the ratio of the triangular microjet hole bottom edge length to the spacing between the holes is too small, leading to a deterioration in the control effect. The addition of microjets reduces the total pressure recovery coefficient.(c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Experimental and Numerical Study on Incident Shock Wave/Boundary Layer Interaction Control
    Zhang, Chuanbiao
    Luo, Yanhao
    Liang, Hua
    Guo, Shanguang
    Yang, Hesen
    ACTUATORS, 2022, 11 (06)
  • [22] Study of passive control in a transonic shock wave boundary-layer interaction
    Bur, R
    Corbel, B
    Delery, J
    AIAA JOURNAL, 1998, 36 (03) : 394 - 400
  • [23] Passive and active control of normal shock wave - turbulent boundary layer interaction
    Doerffer, P
    Bohning, R
    FOURTH INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL AND COMPUTATIONAL AEROTHERMODYNAMICS OF INTERNAL FLOWS, VOL I, PROCEEDINGS, 1999, : 198 - 206
  • [24] Optimization and analysis of shock wave/boundary layer interaction for drag reduction by Shock Control Bump
    Mazaheri, K.
    Kiani, K. C.
    Nejati, A.
    Zeinalpour, M.
    Taheri, R.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2015, 42 : 196 - 208
  • [25] Characteristics of reattached boundary layer in shock wave and turbulent boundary layer interaction
    Tong, Fulin
    Duan, Junyi
    Li, Xinliang
    CHINESE JOURNAL OF AERONAUTICS, 2022, 35 (06) : 172 - 185
  • [26] Characteristics of reattached boundary layer in shock wave and turbulent boundary layer interaction
    Fulin TONG
    Junyi DUAN
    Xinliang LI
    Chinese Journal of Aeronautics , 2022, (06) : 172 - 185
  • [27] Effects of boundary layer bleed on the swept shock wave/boundary layer interaction
    Komiyama, Fumio
    Tanaka, Yasuyuki
    Shizawa, Takaaki
    Honami, Shinji
    Sakata, Kimio
    Yanagi, Ryoji
    Shindo, Shigemi
    Murakami, Akira
    Yoshinaga, Takashi
    Shiraishi, Kazuo
    Tanaka, Atsushige
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1994, 60 (578): : 3408 - 3414
  • [28] Characteristics of reattached boundary layer in shock wave and turbulent boundary layer interaction
    Fulin TONG
    Junyi DUAN
    Xinliang LI
    Chinese Journal of Aeronautics, 2022, 35 (06) : 172 - 185
  • [29] PRESSURE RISE REQUIRED FOR SEPARATION IN INTERACTION BETWEEN TURBULENT BOUNDARY LAYER AND SHOCK WAVE
    TYLER, RD
    SHAPIRO, AH
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1953, 20 (12): : 858 - 860
  • [30] Recent progress in conical shock wave/boundary layer interaction with spanwise pressure gradient
    Zuo, Feng-Yuan
    Pirozzoli, Sergio
    PROPULSION AND POWER RESEARCH, 2024, 13 (03) : 295 - 318