Genome-wide investigation of the WRKY transcription factor gene family in weeping forsythia: expression profile and cold and drought stress responses

被引:7
|
作者
Yang, Ya-Lin [1 ]
Cushman, Samuel A. [2 ]
Wang, Shu-Chen [1 ]
Wang, Fan [1 ]
Li, Qian [1 ]
Liu, Hong-Li [1 ]
Li, Yong [3 ,4 ]
机构
[1] Henan Agr Univ, Coll Landscape & Art, Innovat Platform Mol Biol, Zhengzhou, Peoples R China
[2] No Arizona Univ, Sch Forestry, Flagstaff, AZ USA
[3] Inner Mongolia Normal Univ, Coll Life Sci & Technol, Hohhot, Peoples R China
[4] Chinese Acad Forestry, State Key Lab Tree Genet & Breeding, Beijing, Peoples R China
关键词
Cold stress; Drought stress; WRKY transcription factor; Gene expression; UPSTREAM REGIONS; PROTEIN; MUTATION; BINDING;
D O I
10.1007/s10709-023-00184-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Weeping forsythia is a wide-spread shrub in China with important ornamental, medicinal and ecological values. It is widely distributed in China's warm temperate zone. In plants, WRKY transcription factors play important regulatory roles in seed germination, flower development, fruit ripening and coloring, and biotic and abiotic stress response. To date, WRKY transcription factors have not been systematically studied in weeping forsythia. In this study, we identified 79 WRKY genes in weeping forsythia and classified them according to their naming rules in Arabidopsis thaliana. Phylogenetic tree analysis showed that, except for IIe subfamily, whose clustering was inconsistent with A. thaliana clustering, other subfamily clustering groups were consistent. Cis-element analysis showed that WRKY genes related to pathogen resistance in weeping forsythia might be related to methyl jasmonate and salicylic acid-mediated signaling pathways. Combining cis-element and expression pattern analyses of WRKY genes showed that more than half of WRKY genes were involved in light-dependent development and morphogenesis in different tissues. The gene expression results showed that 13 WRKY genes were involved in drought response, most of which might be related to the abscisic acid signaling pathway, and a few of which might be regulated by MYB transcription factors. The gene expression results under cold stress showed that 17 WRKY genes were involved in low temperature response, and 9 of them had low temperature responsiveness cis-elements. Our study of WRKY family in weeping forsythia provided useful resources for molecular breeding and important clues for their functional verification.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 50 条
  • [41] Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera
    Lina Wang
    Wei Zhu
    Linchuan Fang
    Xiaoming Sun
    Lingye Su
    Zhenchang Liang
    Nian Wang
    Jason P Londo
    Shaohua Li
    Haiping Xin
    BMC Plant Biology, 14
  • [42] Genome-wide identification and expression analysis of the WRKY transcription factor family in flax (Linum usitatissimum L.)
    Hongmei Yuan
    Wendong Guo
    Lijuan Zhao
    Ying Yu
    Si Chen
    Lei Tao
    Lili Cheng
    Qinghua Kang
    Xixia Song
    Jianzhong Wu
    Yubo Yao
    Wengong Huang
    Ying Wu
    Yan Liu
    Xue Yang
    Guangwen Wu
    BMC Genomics, 22
  • [43] Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha
    Zhang, Zihan
    Ji, Mei
    Ze, Sangzi
    Song, Wenzheng
    Yang, Bin
    Zhao, Ning
    BMC GENOMICS, 2025, 26 (01):
  • [44] Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress
    Goel, Ridhi
    Pandey, Ashutosh
    Trivedi, Prabodh K.
    Asif, Mehar H.
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [45] Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses
    Donghua Li
    Pan Liu
    Jingyin Yu
    Linhai Wang
    Komivi Dossa
    Yanxin Zhang
    Rong Zhou
    Xin Wei
    Xiurong Zhang
    BMC Plant Biology, 17
  • [46] Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses
    Li, Donghua
    Liu, Pan
    Yu, Jingyin
    Wang, Linhai
    Dossa, Komivi
    Zhang, Yanxin
    Zhou, Rong
    Wei, Xin
    Zhang, Xiurong
    BMC PLANT BIOLOGY, 2017, 17
  • [47] Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress
    Zhao, Tao
    Liang, Dong
    Wang, Ping
    Liu, Jingying
    Ma, Fengwang
    MOLECULAR GENETICS AND GENOMICS, 2012, 287 (05) : 423 - 436
  • [48] Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress
    Tao Zhao
    Dong Liang
    Ping Wang
    Jingying Liu
    Fengwang Ma
    Molecular Genetics and Genomics, 2012, 287 : 423 - 436
  • [49] Genome-Wide Identification of the NAC Gene Family in Zanthoxylum bungeanum and Their Transcriptional Responses to Drought Stress
    Hu, Haichao
    Ma, Lei
    Chen, Xin
    Fei, Xitong
    He, Beibei
    Luo, Yingli
    Liu, Yonghong
    Wei, Anzhi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [50] Genome-wide identification and transcriptional expression profiles of the transcription factor WRKY in Gentiana macrophylla
    Gu, Xiaohui
    Zhou, Lipan
    Pu, Yang
    Jiang, Fan
    Yang, Li
    Zhang, Tianyi
    Zhou, Tao
    Wang, Xumei
    MOLECULAR BIOLOGY REPORTS, 2025, 52 (01)