Genome-wide investigation of the WRKY transcription factor gene family in weeping forsythia: expression profile and cold and drought stress responses

被引:7
|
作者
Yang, Ya-Lin [1 ]
Cushman, Samuel A. [2 ]
Wang, Shu-Chen [1 ]
Wang, Fan [1 ]
Li, Qian [1 ]
Liu, Hong-Li [1 ]
Li, Yong [3 ,4 ]
机构
[1] Henan Agr Univ, Coll Landscape & Art, Innovat Platform Mol Biol, Zhengzhou, Peoples R China
[2] No Arizona Univ, Sch Forestry, Flagstaff, AZ USA
[3] Inner Mongolia Normal Univ, Coll Life Sci & Technol, Hohhot, Peoples R China
[4] Chinese Acad Forestry, State Key Lab Tree Genet & Breeding, Beijing, Peoples R China
关键词
Cold stress; Drought stress; WRKY transcription factor; Gene expression; UPSTREAM REGIONS; PROTEIN; MUTATION; BINDING;
D O I
10.1007/s10709-023-00184-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Weeping forsythia is a wide-spread shrub in China with important ornamental, medicinal and ecological values. It is widely distributed in China's warm temperate zone. In plants, WRKY transcription factors play important regulatory roles in seed germination, flower development, fruit ripening and coloring, and biotic and abiotic stress response. To date, WRKY transcription factors have not been systematically studied in weeping forsythia. In this study, we identified 79 WRKY genes in weeping forsythia and classified them according to their naming rules in Arabidopsis thaliana. Phylogenetic tree analysis showed that, except for IIe subfamily, whose clustering was inconsistent with A. thaliana clustering, other subfamily clustering groups were consistent. Cis-element analysis showed that WRKY genes related to pathogen resistance in weeping forsythia might be related to methyl jasmonate and salicylic acid-mediated signaling pathways. Combining cis-element and expression pattern analyses of WRKY genes showed that more than half of WRKY genes were involved in light-dependent development and morphogenesis in different tissues. The gene expression results showed that 13 WRKY genes were involved in drought response, most of which might be related to the abscisic acid signaling pathway, and a few of which might be regulated by MYB transcription factors. The gene expression results under cold stress showed that 17 WRKY genes were involved in low temperature response, and 9 of them had low temperature responsiveness cis-elements. Our study of WRKY family in weeping forsythia provided useful resources for molecular breeding and important clues for their functional verification.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 50 条
  • [21] Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton
    Cai, Caiping
    Niu, Erli
    Du, Hao
    Zhao, Liang
    Feng, Yue
    Guo, Wangzhen
    CROP JOURNAL, 2014, 2 (2-3): : 87 - 101
  • [22] Genome-Wide Analysis of Snapdragon WRKY and VQ Gene Families and Their Expression in Response to Drought and Cold Stresses
    Ding, Huaqiao
    Mao, Lihui
    Zou, Qingcheng
    Hu, Wei
    Cao, Xuerui
    Dong, Qing
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2022, 91 (04) : 773 - 789
  • [23] Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium
    Mingquan Ding
    Jiadong Chen
    Yurong Jiang
    Lifeng Lin
    YueFen Cao
    Minhua Wang
    Yuting Zhang
    Junkang Rong
    Wuwei Ye
    Molecular Genetics and Genomics, 2015, 290 : 151 - 171
  • [24] Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium
    Ding, Mingquan
    Chen, Jiadong
    Jiang, Yurong
    Lin, Lifeng
    Cao, YueFen
    Wang, Minhua
    Zhang, Yuting
    Rong, Junkang
    Ye, Wuwei
    MOLECULAR GENETICS AND GENOMICS, 2015, 290 (01) : 151 - 171
  • [25] Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)
    Jinyi Liu
    Nana Chen
    Fei Chen
    Bin Cai
    Silvia Dal Santo
    Giovanni Battista Tornielli
    Mario Pezzotti
    Zong-Ming (Max) Cheng
    BMC Genomics, 15
  • [26] Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)
    Liu, Jinyi
    Chen, Nana
    Chen, Fei
    Cai, Bin
    Dal Santo, Silvia
    Tornielli, Giovanni Battista
    Pezzotti, Mario
    Cheng, Zong-Ming
    BMC GENOMICS, 2014, 15
  • [27] Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava
    Wei, Yunxie
    Shi, Haitao
    Xia, Zhiqiang
    Tie, Weiwei
    Ding, Zehong
    Yan, Yan
    Wang, Wenquan
    Hu, Wei
    Li, Kaimian
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [28] Genome-Wide Identification of WRKY Gene Family and Expression Analysis under Abiotic Stress in Barley
    Zheng, Junjun
    Zhang, Ziling
    Tong, Tao
    Fang, Yunxia
    Zhang, Xian
    Niu, Chunyu
    Li, Jia
    Wu, Yuhuan
    Xue, Dawei
    Zhang, Xiaoqin
    AGRONOMY-BASEL, 2021, 11 (03):
  • [29] Genome-Wide Analysis of the NAC Transcription Factor Gene Family Reveals Differential Expression Patterns and Cold-Stress Responses in the Woody Plant Prunus mume
    Zhuo, Xiaokang
    Zheng, Tangchun
    Zhang, Zhiyong
    Zhang, Yichi
    Jiang, Liangbao
    Ahmad, Sagheer
    Sun, Lidan
    Wang, Jia
    Cheng, Tangren
    Zhang, Qixiang
    GENES, 2018, 9 (10)
  • [30] Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering
    Guorui Wang
    Zhen Yuan
    Pengyu Zhang
    Zhixue Liu
    Tongchao Wang
    Li Wei
    Physiology and Molecular Biology of Plants, 2020, 26 : 705 - 717