On the SCD semismooth* Newton method for generalized equations with application to a class of static contact problems with Coulomb friction

被引:2
|
作者
Gfrerer, Helmut [1 ]
Mandlmayr, Michael [1 ]
Outrata, Jiri, V [2 ,3 ]
Valdman, Jan [2 ,4 ]
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Czech Acad Sci, Inst Informat Theory & Automat, Prague 18208, Czech Republic
[3] Federat Univ Australia, Ctr Informat & Appl Optimizat, POB 663, Ballarat, Vic 3350, Australia
[4] Czech Tech Univ, Fac Informat Technol, Dept Appl Math, Thakurova 9, Prague 16000, Czech Republic
基金
奥地利科学基金会;
关键词
Newton method; semismoothness*; Subspace containing derivative; Generalized equation; Signorini problem with Coulomb friction; SHAPE OPTIMIZATION; CRITERION;
D O I
10.1007/s10589-022-00429-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the paper, a variant of the semismooth* Newton method is developed for the numerical solution of generalized equations, in which the multi-valued part is a so-called SCD (subspace containing derivative) mapping. Under a rather mild regularity requirement, the method exhibits (locally) superlinear convergence behavior. From the main conceptual algorithm, two implementable variants are derived whose efficiency is tested via a generalized equation modeling a discretized static contact problem with Coulomb friction.
引用
收藏
页码:1159 / 1191
页数:33
相关论文
共 50 条