A generalized Jacobian based Newton method for semismooth block-triangular system of equations

被引:5
|
作者
Smietanski, Marek J. [1 ]
机构
[1] Univ Lodz, Dept Numer Methods, PL-90238 Lodz, Poland
关键词
nonsmooth equations; semismooth sparse systems; generalized Newton method; parametrization of Newton method;
D O I
10.1016/j.cam.2006.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper will consider the problem of solving the nonlinear system of equations with block-triangular structure. A generalized block Newton method for semismooth sparse system is presented and a locally superlinear convergence is proved. Moreover, locally linear convergence of some parameterized Newton method is shown. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:305 / 313
页数:9
相关论文
共 50 条
  • [1] ON A SEMISMOOTH* NEWTON METHOD FOR SOLVING GENERALIZED EQUATIONS
    Gfrerer, Helmut
    Outrata, Jiri, V
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 489 - 517
  • [2] The Josephy–Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization
    Alexey F. Izmailov
    Alexey S. Kurennoy
    Mikhail V. Solodov
    [J]. Set-Valued and Variational Analysis, 2013, 21 : 17 - 45
  • [3] Generalized Newton-iterative method for semismooth equations
    Sun, Zhe
    Zeng, Jinping
    Xu, Hongru
    [J]. NUMERICAL ALGORITHMS, 2011, 58 (03) : 333 - 349
  • [4] Generalized Newton-iterative method for semismooth equations
    Zhe Sun
    Jinping Zeng
    Hongru Xu
    [J]. Numerical Algorithms, 2011, 58
  • [5] The Josephy-Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization
    Izmailov, Alexey F.
    Kurennoy, Alexey S.
    Solodov, Mikhail V.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (01) : 17 - 45
  • [6] ON NEWTON'S METHOD FOR SEMISMOOTH EQUATIONS
    Argyros, I. K.
    Gonzalez, D.
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [7] A quadratically convergent semismooth Newton method for nonlinear semidefinite programming without generalized Jacobian regularity
    Feng, Fuxiaoyue
    Ding, Chao
    Li, Xudong
    [J]. arXiv,
  • [8] A model-based block-triangular preconditioner for the Bidomain system in electrocardiology
    Gerardo-Giorda, L.
    Mirabella, L.
    Nobile, F.
    Perego, M.
    Veneziani, A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (10) : 3625 - 3639
  • [9] Incomplete Jacobian Newton method for nonlinear equations
    Liu, Hao
    Ni, Qin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (01) : 218 - 227
  • [10] SPECTRAL ANALYSIS OF A BLOCK-TRIANGULAR PRECONDITIONER FOR THE BIDOMAIN SYSTEM IN ELECTROCARDIOLOGY
    Gerardo-Giorda, Luca
    Mirabella, Lucia
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2012, 39 : 186 - 201