Information theoretic perspective on sample complexity

被引:3
|
作者
Pereg, Deborah [1 ,2 ,3 ,4 ,5 ]
机构
[1] MGH, Wellman Ctr Photomed, Boston, MA USA
[2] Harvard Med Sch, Sch Med, Boston, MA USA
[3] MIT CSAIL, Cambridge, MA USA
[4] MIT MechE, Cambridge, MA 02139 USA
[5] Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Information theory; Supervised learning; Sample complexity; Generalization;
D O I
10.1016/j.neunet.2023.08.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The statistical supervised learning framework assumes an input-output set with a joint probability distribution that is reliably represented by the training dataset. The learning system is then required to output a prediction rule learned from the training dataset's input-output pairs. In this work, we investigate the relationship between the sample complexity, the empirical risk and the generalization error based on the asymptotic equipartition property (AEP) (Shannon, 1948). We provide theoretical guarantees for reliable learning under the information-theoretic AEP, with respect to the generalization error and the sample size in different settings.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:445 / 449
页数:5
相关论文
共 50 条
  • [41] Structure Learning with Side Information: Sample Complexity
    Sihag, Saurabh
    Tajer, Ali
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [42] The relationship between information-theoretic and chaos-theoretic measures of the complexity of manufacturing systems
    Efstathiou, J
    Kariuki, S
    Huatuco, LH
    Sivadasan, S
    Calinescu, A
    ADVANCES IN MANUFACTURING TECHNOLOGY - XV, 2001, : 421 - 426
  • [43] Unequal Error Protection: An Information-Theoretic Perspective
    Borade, Shashi
    Nakiboglu, Baris
    Zheng, Lizhong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (12) : 5511 - 5539
  • [44] Clustering of Power Networks: An Information-Theoretic Perspective
    Baranwal, Mayank
    Salapaka, Srinivasa M.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 3323 - 3328
  • [45] Direct and Indirect Effects-An Information Theoretic Perspective
    Schamberg, Gabriel
    Chapman, William
    Xie, Shang-Ping
    Coleman, Todd P.
    ENTROPY, 2020, 22 (08)
  • [46] Features that draw visual attention: an information theoretic perspective
    Bruce, NDB
    NEUROCOMPUTING, 2005, 65 : 125 - 133
  • [47] An Information Theoretic Perspective Over an Extremal Entropy Inequality
    Park, Sangwoo
    Serpedin, Erchin
    Qaraqe, Khalid
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [48] The Neural Representation of Time: An Information-Theoretic Perspective
    Hass, Joachim
    Herrmann, J. Michael
    NEURAL COMPUTATION, 2012, 24 (06) : 1519 - 1552
  • [49] An information-theoretic perspective of physical adversarial patches
    Tarchoun, Bilel
    Ben Khalifa, Anouar
    Mahjoub, Mohamed Ali
    Abu-Ghazaleh, Nael
    Alouani, Ihsen
    NEURAL NETWORKS, 2024, 179
  • [50] Haptic media from an information-theoretic perspective
    Moustakas, Konstantinos
    2013 IEEE INTERNATIONAL SYMPOSIUM ON HAPTIC AUDIO-VISUAL ENVIRONMENTS AND GAMES (HAVE 2013), 2013, : 81 - 86