Information theoretic perspective on sample complexity

被引:3
|
作者
Pereg, Deborah [1 ,2 ,3 ,4 ,5 ]
机构
[1] MGH, Wellman Ctr Photomed, Boston, MA USA
[2] Harvard Med Sch, Sch Med, Boston, MA USA
[3] MIT CSAIL, Cambridge, MA USA
[4] MIT MechE, Cambridge, MA 02139 USA
[5] Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Information theory; Supervised learning; Sample complexity; Generalization;
D O I
10.1016/j.neunet.2023.08.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The statistical supervised learning framework assumes an input-output set with a joint probability distribution that is reliably represented by the training dataset. The learning system is then required to output a prediction rule learned from the training dataset's input-output pairs. In this work, we investigate the relationship between the sample complexity, the empirical risk and the generalization error based on the asymptotic equipartition property (AEP) (Shannon, 1948). We provide theoretical guarantees for reliable learning under the information-theoretic AEP, with respect to the generalization error and the sample size in different settings.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:445 / 449
页数:5
相关论文
共 50 条
  • [21] Toward a critical theoretic perspective in information systems
    Benoît, G
    LIBRARY QUARTERLY, 2002, 72 (04): : 441 - 471
  • [22] An Information-Theoretic Perspective on Overfitting and Underfitting
    Bashir, Daniel
    Montanez, George D.
    Sehra, Sonia
    Segura, Pedro Sandoval
    Lauw, Julius
    AI 2020: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 12576 : 347 - 358
  • [23] Frequency Domain Connectivity: an Information Theoretic Perspective
    Takahashi, Daniel Y.
    Baccala, Luiz A.
    Sameshima, Koichi
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 1726 - 1729
  • [24] Understanding Adjustment from an Information Theoretic Perspective
    Chang G.
    Zhang S.
    Liu Z.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (02): : 313 - 323
  • [25] Random Access: An Information-Theoretic Perspective
    Minero, Paolo
    Franceschetti, Massimo
    Tse, David N. C.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (02) : 909 - 930
  • [26] Cognitive Radio: An Information-Theoretic Perspective
    Jovicic, Aleksandar
    Viswanath, Pramod
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (09) : 3945 - 3958
  • [27] An information theoretic perspective on the speech spectrum process
    Nordén, F
    Eriksson, T
    Hedelin, P
    2000 IEEE WORKSHOP ON SPEECH CODING, PROCEEDINGS: MEETING THE CHALLENGES OF THE NEW MILLENNIUM, 2000, : 93 - 95
  • [28] Synaptic transmission: An information-theoretic perspective
    Manwani, A
    Koch, C
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 201 - 207
  • [29] NOISY GROUP TESTING: AN INFORMATION THEORETIC PERSPECTIVE
    Atia, George
    Saligrama, Venkatesh
    2009 47TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1 AND 2, 2009, : 355 - 362
  • [30] Information-Theoretic Perspective for Teaching Logic
    Nepomuceno-Fernandez, Angel
    TOOLS FOR TEACHING LOGIC, 2011, 6680 : 170 - 177