Calderon-Zygmund type estimates for singular quasilinear elliptic obstacle problems with measure data

被引:3
|
作者
Tran, Minh-Phuong [1 ]
Nguyen, Thanh-Nhan [2 ]
Huynh, Phuoc-Nguyen [3 ]
机构
[1] Ton Duc Thang Univ, Appl Anal Res Grp, Fac Math & Stat, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Univ Educ, Grp Anal & Appl Math, Dept Math, Ho Chi Minh City, Vietnam
[3] Nguyen High Sch, Ho Chi Minh City, Vietnam
关键词
elliptic obstacle problems; measure data; p-Laplacian type; frac-tional maximal functions; gradient estimates; Calderon-Zygmund type estimates; UNILATERAL PROBLEMS; EQUATIONS; EXISTENCE; BOUNDS; POTENTIALS; UNIQUENESS;
D O I
10.4064/sm220321-26-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a Calderon-Zygmund type estimate for elliptic obstacle prob-lems of p-Laplace type involving measure data under fractional maximal functions. Here, the problem is considered for the singular case when 1 < p & LE; 2 - 1/n and we prove the global regularity for weak solutions in the Lorentz spaces setting, under the assumption of small BMO coefficients and the domain being sufficiently fiat in Reifenberg's sense.
引用
收藏
页码:287 / 319
页数:33
相关论文
共 50 条