Calderon-Zygmund type estimates for singular quasilinear elliptic obstacle problems with measure data
被引:3
|
作者:
论文数: 引用数:
h-index:
机构:
Tran, Minh-Phuong
[1
]
Nguyen, Thanh-Nhan
论文数: 0引用数: 0
h-index: 0
机构:
Ho Chi Minh City Univ Educ, Grp Anal & Appl Math, Dept Math, Ho Chi Minh City, VietnamTon Duc Thang Univ, Appl Anal Res Grp, Fac Math & Stat, Ho Chi Minh City, Vietnam
Nguyen, Thanh-Nhan
[2
]
Huynh, Phuoc-Nguyen
论文数: 0引用数: 0
h-index: 0
机构:
Nguyen High Sch, Ho Chi Minh City, VietnamTon Duc Thang Univ, Appl Anal Res Grp, Fac Math & Stat, Ho Chi Minh City, Vietnam
Huynh, Phuoc-Nguyen
[3
]
机构:
[1] Ton Duc Thang Univ, Appl Anal Res Grp, Fac Math & Stat, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Univ Educ, Grp Anal & Appl Math, Dept Math, Ho Chi Minh City, Vietnam
We establish a Calderon-Zygmund type estimate for elliptic obstacle prob-lems of p-Laplace type involving measure data under fractional maximal functions. Here, the problem is considered for the singular case when 1 < p & LE; 2 - 1/n and we prove the global regularity for weak solutions in the Lorentz spaces setting, under the assumption of small BMO coefficients and the domain being sufficiently fiat in Reifenberg's sense.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Baasandorj, Sumiya
Byun, Sun-Sig
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 08826, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
机构:
Indian Inst Sci Educ & Res Kolkata, Dept Math & Stat, Mohanpur 741246, IndiaIndian Inst Sci Educ & Res Kolkata, Dept Math & Stat, Mohanpur 741246, India
Bagchi, Sayan
论文数: 引用数:
h-index:
机构:
Garg, Rahul
Singh, Joydwip
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Sci Educ & Res Kolkata, Dept Math & Stat, Mohanpur 741246, IndiaIndian Inst Sci Educ & Res Kolkata, Dept Math & Stat, Mohanpur 741246, India
Singh, Joydwip
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES,
2024,
134
(02):