Human Motion Synthesis Using Trigonometric Splines

被引:1
|
作者
Zhakatayev, Altay [1 ]
Avazov, Nurilla [2 ]
Rogovchenko, Yuriy [3 ]
Patzold, Matthias [2 ]
机构
[1] Univ Agder, Dept ICT, N-4604 Kristiansand, Norway
[2] Univ Agder, Dept ICT, N-4879 Grimstad, Norway
[3] Univ Agder, Dept Math, N-4604 Kristiansand, Norway
关键词
Splines (mathematics); Optimization; Mathematical models; Dynamics; Biological system modeling; Computational modeling; Legged locomotion; Human motion synthesis; nonlinear programming problem; trigonometric splines; trajectory optimization; OPTIMIZATION;
D O I
10.1109/ACCESS.2023.3244062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we present a simple framework to synthesize human motion. Our main goal is to propose a methodology tailored for inexperienced users to initiate their research in human motion simulation and human motion trajectory optimization. The novelties of the work include the following. First, trigonometric splines are used instead of traditional B-splines to discretize the generalized coordinates and velocities. Second, useful identities for trigonometric splines are derived. Third, this work is intended to be an example, so that even non-skilled users, such as undergraduate students, can perform human motion analysis using a high-level programming language such as MATLAB. Four simulations of human motion are generated: walking, sitting and standing, side-step, and jump. The results of the walking simulation are validated by experiments. Simulation and experimental results are presented and discussed.
引用
收藏
页码:14293 / 14308
页数:16
相关论文
共 50 条
  • [41] USING KINECT TO CAPTURE HUMAN MOTION FOR MECHANISM SYNTHESIS, MOTION GENERATION AND VISUALIZATION
    Purwar, Anurag
    Desai, Rumit
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2016, VOL 5A, 2016,
  • [42] Optimal properties of the uniform algebraic trigonometric B-splines
    Wang, GZ
    Li, YJ
    COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (02) : 226 - 238
  • [43] Identities for trigonometric B-splines with an application to curve design
    Walz, G
    BIT, 1997, 37 (01): : 189 - 201
  • [44] Motion estimation with quadtree splines
    Microsoft Corp, Redmond, United States
    IEEE Trans Pattern Anal Mach Intell, 12 (1199-1210):
  • [45] Motion Design with Polynomial Splines
    Nolte, Rainer
    BEWEGUNGSTECHNIK 2010: KOPPELGETRIEBE, KURVENGETRIEBE UND GEREGELTE ANTRIEBE IM MASCHINEN-, FAHRZEUG-UND GERATEBAU, 2010, 2116 : 77 - 85
  • [46] Motion estimation with quadtree splines
    Szeliski, R
    Shum, HY
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (12) : 1199 - 1210
  • [47] A computational method for nonlinear Burgers' equation using quartic-trigonometric tension B-splines
    Yigit, Gulsemay
    Hepson, Ozlem Ersoy
    Allahviranloo, Tofigh
    MATHEMATICAL SCIENCES, 2024, 18 (01) : 17 - 28
  • [48] A computational method for nonlinear Burgers’ equation using quartic-trigonometric tension B-splines
    Gulsemay Yigit
    Ozlem Ersoy Hepson
    Tofigh Allahviranloo
    Mathematical Sciences, 2024, 18 : 17 - 28
  • [49] Optimal trajectory planning for industrial robot along a specified path with payload constraint using trigonometric splines
    Chiddarwar, Shital S.
    Babu, N. Ramesh
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2012, 6 (01) : 39 - 65
  • [50] DYNAMIC SYNTHESIS OF CAMS USING FINITE TRIGONOMETRIC SERIES
    WIEDERRICH, JL
    ROTH, B
    JOURNAL OF ENGINEERING FOR INDUSTRY-TRANSACTIONS OF THE ASME, 1975, 97 (01): : 287 - 293