Motion Design with Polynomial Splines

被引:0
|
作者
Nolte, Rainer [1 ]
机构
[1] Nolte NC Kurventech GmbH, Bielefeld, Germany
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
引用
收藏
页码:77 / 85
页数:9
相关论文
共 50 条
  • [1] On splines and polynomial tools for constrained motion planning
    Suryawan, Fajar
    De Dona, Jose
    Seron, Maria
    [J]. 18TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2010, : 939 - 944
  • [2] Polynomial splines as examples of Chebyshevian splines
    Marie-Laurence Mazure
    [J]. Numerical Algorithms, 2012, 60 : 241 - 262
  • [3] Polynomial splines as examples of Chebyshevian splines
    Mazure, Marie-Laurence
    [J]. NUMERICAL ALGORITHMS, 2012, 60 (02) : 241 - 262
  • [4] Splines and polynomial tools for flatness-based constrained motion planning
    Suryawan, Fajar
    De Dona, Jose
    Seron, Mariia
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (08) : 1396 - 1411
  • [5] Polynomial Chebyshev splines
    Mazure, ML
    Laurent, PJ
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (04) : 317 - 343
  • [6] Inequalities for polynomial splines
    N. P. Korneichuk
    [J]. Ukrainian Mathematical Journal, 2000, 52 (1) : 62 - 70
  • [7] Variable degree polynomial splines are Chebyshev splines
    Tina Bosner
    Mladen Rogina
    [J]. Advances in Computational Mathematics, 2013, 38 : 383 - 400
  • [8] HOMOGENEOUS POLYNOMIAL SPLINES
    GOODMAN, TNT
    LEE, SL
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 117 : 89 - 102
  • [9] Polynomial functions as splines
    David Kazhdan
    Tamar Ziegler
    [J]. Selecta Mathematica, 2019, 25
  • [10] Polynomial functions as splines
    Kazhdan, David
    Ziegler, Tamar
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (02):