Structure-guided AAV capsid evolution strategies for enhanced CNS gene delivery

被引:11
|
作者
Gonzalez, Trevor J. [1 ]
Mitchell-Dick, Aaron [2 ]
Blondel, Leo O. [2 ]
Fanous, Marco M. [2 ]
Hull, Joshua A. [2 ]
Oh, Daniel K. [2 ]
Moller-Tank, Sven [3 ]
Rivera, Ruth M. Castellanos [3 ]
Piedrahita, Jorge A. [4 ]
Asokan, Aravind [1 ,2 ,5 ]
机构
[1] Duke Univ, Sch Med, Dept Mol Genet & Microbiol, Durham, NC 27708 USA
[2] Duke Univ, Sch Med, Dept Surg, Durham, NC 27708 USA
[3] Univ North Carolina Chapel Hill, Gene Therapy Ctr, Chapel Hill, NC USA
[4] North Carolina State Univ, Coll Vet Med, Raleigh, NC USA
[5] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
关键词
ADENOASSOCIATED VIRAL CAPSIDS; MOUSE ADENOVIRUS TYPE-1; DIRECTED EVOLUTION; RECEPTOR FOOTPRINT; VECTORS; VARIANTS; THERAPY; REVEALS; BINDING; ANTIBODIES;
D O I
10.1038/s41596-023-00875-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Over the past 5 years, our laboratory has systematically developed a structure-guided library approach to evolve new adeno-associated virus (AAV) capsids with altered tissue tropism, higher transduction efficiency and the ability to evade pre-existing humoral immunity. Here, we provide a detailed protocol describing two distinct evolution strategies using structurally divergent AAV serotypes as templates, exemplified by improving CNS gene transfer efficiency in vivo. We outline four major components of our strategy: (i) structure-guided design of AAV capsid libraries, (ii) AAV library production, (iii) library cycling in single versus multiple animal models, followed by (iv) evaluation of lead AAV vector candidates in vivo. The protocol spans similar to 95 d, excluding gene expression analysis in vivo, and can vary depending on user experience, resources and experimental design. A distinguishing attribute of the current protocol is the focus on providing biomedical researchers with 3D structural information to guide evolution of precise 'hotspots' on AAV capsids. Furthermore, the protocol outlines two distinct methods for AAV library evolution consisting of adenovirus-enabled infectious cycling in a single species and noninfectious cycling in a cross-species manner. Notably, our workflow can be seamlessly merged with other RNA transcript-based library strategies and tailored for tissue-specific capsid selection. Overall, the procedures outlined herein can be adapted to expand the AAV vector toolkit for genetic manipulation of animal models and development of human gene therapies.
引用
收藏
页码:3413 / +
页数:50
相关论文
共 50 条
  • [31] Rationally Designed a Novel AAV Capsid for Intra-Articular Gene Delivery
    Luo, Shuang
    Xie, Qing
    Li, Qingwei
    Zheng, Qiang
    MOLECULAR THERAPY, 2024, 32 (04) : 263 - 263
  • [32] Translation of intravenous delivery of AAV gene therapy for the treatment of CNS diseases
    Sah, D.
    Mazzarelli, A.
    Christensen, E.
    Thompson, J.
    Lindgren, H.
    Felix-Ortiz, A.
    Aubin, J.
    Scheel, M.
    Pechan, P.
    Horowitz, E.
    Shu, Y.
    Zhou, X.
    Carter, T.
    Chen, Q.
    Carroll, J.
    Goulet, M.
    Patzke, H.
    HUMAN GENE THERAPY, 2017, 28 (12) : A74 - A74
  • [33] Directed Evolution of Enhanced AAV Capsid Variants Following Intravitreal Injection in Macaque
    Boye, Sanford L.
    Choudhury, Shreyasi
    Marsic, Damien
    Strang, Christianne E.
    Alexander, John J.
    Witherspoon, C. Douglas
    Zolotukhin, Sergei
    Gamlin, Paul D.
    Boye, Shannon Elizabeth
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [34] Gene Delivery AAV Vector Exploits CPP to Better Reach CNS
    Genet. Eng. Biotechnol. News, 2022, 11 (14): : 14
  • [35] Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species
    Tabebordbar, S.
    Lagerborg, K.
    Ye, S.
    Stanton, A.
    King, E.
    Tellez, L.
    Krunnfusz, A.
    Tavakoli, S.
    Widrick, J.
    Messemer, K.
    Troiano, E.
    Moghadaszadeh, B.
    Peacker, B.
    Leacock, K.
    Horwitz, N.
    Beggs, A.
    Wagers, A.
    Sabeti, P.
    NEUROMUSCULAR DISORDERS, 2022, 32 : S96 - S96
  • [36] Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species
    Tabebordbar, Mohammadsharif
    Lagerborg, Kim A.
    Stanton, Alexandra
    King, Emily M.
    Ye, Simon
    Tellez, Liana
    Krunnfusz, Allison
    Tavakoli, Sahar
    Widrick, Jeffrey J.
    Messemer, Kathleen A.
    Troiano, Emily C.
    Moghadaszadeh, Behzad
    Peacker, Bryan L.
    Leacock, Krystynne A.
    Horwitz, Naftali
    Beggs, Alan H.
    Wagers, Amy J.
    Sabeti, Pardis C.
    CELL, 2021, 184 (19) : 4919 - +
  • [37] AAV Capsid-Promoter Interactions Determine CNS Cell Selective Gene Expression In Vivo
    Powell, Sara Kathleen
    Samulski, R. Jude
    McCown, Thomas J.
    MOLECULAR THERAPY, 2020, 28 (04) : 225 - 225
  • [38] Toolbox for the structure-guided evolution of ferulic acid decarboxylase (FDC)
    Horia Duță
    Alina Filip
    Levente Csaba Nagy
    Emma Zsófia Aletta Nagy
    Róbert Tőtős
    László Csaba Bencze
    Scientific Reports, 12
  • [39] Toolbox for the structure-guided evolution of ferulic acid decarboxylase (FDC)
    Duta, Horia
    Filip, Alina
    Nagy, Levente Csaba
    Nagy, Emma Zsofia Aletta
    Totos, Robert
    Bencze, Laszlo Csaba
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] A Rationally Engineered Novel Capsid Variant of AAV9 for Pripheral Tissue-Detargeted and CNS-Directed Systemic Gene Delivery
    Zhong, Li
    Li, Shaoyong
    Vliet, Kim Van
    Li, Mengxin
    Xie, Jun
    Li, Jia
    Su, Qin
    He, Ran
    Zhang, Yu
    Li, Huapeng
    Wang, Dan
    Goetzmann, Jason
    Flotte, Terence R.
    Agbandje-McKenna, Mavis
    Gao, Guangping
    MOLECULAR THERAPY, 2013, 21 : S2 - S2