An accessible and versatile deep learning-based sleep stage classifier

被引:2
|
作者
Hanna, Jevri [1 ]
Floeel, Agnes [1 ,2 ]
机构
[1] Greifswald Univ Hosp, Greifswald, Germany
[2] German Ctr Neurodegenerat Dis, Greifswald, Germany
基金
美国国家卫生研究院;
关键词
sleep; deep learning; machine learning; classification; EEG;
D O I
10.3389/fninf.2023.1086634
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Manual sleep scoring for research purposes and for the diagnosis of sleep disorders is labor-intensive and often varies significantly between scorers, which has motivated many attempts to design automatic sleep stage classifiers. With the recent introduction of large, publicly available hand-scored polysomnographic data, and concomitant advances in machine learning methods to solve complex classification problems with supervised learning, the problem has received new attention, and a number of new classifiers that provide excellent accuracy. Most of these however have non-trivial barriers to use. We introduce the Greifswald Sleep Stage Classifier (GSSC), which is free, open source, and can be relatively easily installed and used on any moderately powered computer. In addition, the GSSC has been trained to perform well on a large variety of electrode set-ups, allowing high performance sleep staging with portable systems. The GSSC can also be readily integrated into brain-computer interfaces for real-time inference. These innovations were achieved while simultaneously reaching a level of accuracy equal to, or exceeding, recent state of the art classifiers and human experts, making the GSSC an excellent choice for researchers in need of reliable, automatic sleep staging.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Visualizing Deep Learning-Based Radio Modulation Classifier
    Huang, Liang
    Zhang, You
    Pan, Weijian
    Chen, Jinyin
    Qian, Li Ping
    Wu, Yuan
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) : 47 - 58
  • [2] Shine: A deep learning-based accessible parking management system
    Neupane, Dhiraj
    Bhattarai, Aashish
    Aryal, Sunil
    Bouadjenek, Mohamed Reda
    Seok, Ukmin
    Seok, Jongwon
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [3] UPCLASS: a deep learning-based classifier for UniProtKB entry publications
    Teodoro, Douglas
    Knafou, Julien
    Naderi, Nona
    Pasche, Emilie
    Gobeill, Julien
    Arighi, Cecilia N.
    Ruch, Patrick
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2020,
  • [4] Deep Learning-Based Methylation Classifier for Cancer of Unknown Primary
    Walker, A.
    Galbraith, K.
    Schroff, C.
    Serrano, J.
    Vasudevaraja, V.
    Yang, Y.
    Snuderl, M.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2023, 25 (11): : S20 - S21
  • [5] A deep learning-based histopathology classifier for Focal Cortical Dysplasia
    Jörg Vorndran
    Christoph Neuner
    Roland Coras
    Lucas Hoffmann
    Simon Geffers
    Jonas Honke
    Jochen Herms
    Sigrun Roeber
    Hajo Hamer
    Sebastian Brandner
    Till Hartlieb
    Tom Pieper
    Manfred Kudernatsch
    Christian G. Bien
    Thilo Kalbhenn
    Matthias Simon
    Homa Adle-Biassette
    Jesús Cienfuegos
    Roberta Di Giacomo
    Rita Garbelli
    Hajime Miyata
    Angelika Mühlebner
    Savo Raicevic
    Tuomas Rauramaa
    Fabio Rogerio
    Ingmar Blümcke
    Samir Jabari
    Neural Computing and Applications, 2023, 35 : 12775 - 12792
  • [6] A deep learning-based histopathology classifier for focal cortical dysplasia
    Vorndran, J.
    Bluemcke, I.
    Jabari, S.
    BRAIN PATHOLOGY, 2023, 33
  • [7] Evaluation of a novel deep learning-based classifier for perifissural nodules
    Han, Daiwei
    Heuvelmans, Marjolein
    Rook, Mieneke
    Dorrius, Monique
    van Houten, Luutsen
    Price, Noah Waterfield
    Pickup, Lyndsey C.
    Novotny, Petr
    Oudkerk, Matthijs
    Declerck, Jerome
    Gleeson, Fergus
    van Ooijen, Peter
    Vliegenthart, Rozemarijn
    EUROPEAN RADIOLOGY, 2021, 31 (06) : 4023 - 4030
  • [8] A Deep Learning-Based Radiomic Classifier for Usual Interstitial Pneumonia
    Chung, Jonathan H.
    Chelala, Lydia
    Pugashetti, Janelle Vu
    Wang, Jennifer M.
    Adegunsoye, Ayodeji
    Matyga, Alexander W.
    Keith, Lauren
    Ludwig, Kai
    Zafari, Sahar
    Ghodrati, Sahand
    Ghasemiesfe, Ahmadreza
    Guo, Henry
    Soo, Eleanor
    Lyen, Stephen
    Sayer, Charles
    Hatt, Charles
    Oldham, Justin M.
    CHEST, 2024, 165 (02) : 371 - 380
  • [9] A deep learning-based histopathology classifier for Focal Cortical Dysplasia
    Vorndran, Jorg
    Neuner, Christoph
    Coras, Roland
    Hoffmann, Lucas
    Geffers, Simon
    Honke, Jonas
    Herms, Jochen
    Roeber, Sigrun
    Hamer, Hajo
    Brandner, Sebastian
    Hartlieb, Till
    Pieper, Tom
    Kudernatsch, Manfred
    Bien, Christian G.
    Kalbhenn, Thilo
    Simon, Matthias
    Adle-Biassette, Homa
    Cienfuegos, Jesus
    Di Giacomo, Roberta
    Garbelli, Rita
    Miyata, Hajime
    Muhlebner, Angelika
    Raicevic, Savo
    Rauramaa, Tuomas
    Rogerio, Fabio
    Bluemcke, Ingmar
    Jabari, Samir
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (17): : 12775 - 12792
  • [10] Deep learning-based sleep stage classification with cardiorespiratory and body movement activities in individuals with suspected sleep disorders
    Seiichi Morokuma
    Toshinari Hayashi
    Masatomo Kanegae
    Yoshihiko Mizukami
    Shinji Asano
    Ichiro Kimura
    Yuji Tateizumi
    Hitoshi Ueno
    Subaru Ikeda
    Kyuichi Niizeki
    Scientific Reports, 13