A Deep Learning-Based Radiomic Classifier for Usual Interstitial Pneumonia

被引:5
|
作者
Chung, Jonathan H. [1 ]
Chelala, Lydia [1 ]
Pugashetti, Janelle Vu [2 ]
Wang, Jennifer M. [2 ]
Adegunsoye, Ayodeji [3 ]
Matyga, Alexander W. [1 ]
Keith, Lauren [4 ]
Ludwig, Kai [4 ]
Zafari, Sahar [4 ]
Ghodrati, Sahand [5 ]
Ghasemiesfe, Ahmadreza [5 ]
Guo, Henry [6 ]
Soo, Eleanor [7 ]
Lyen, Stephen [7 ]
Sayer, Charles [7 ]
Hatt, Charles [4 ]
Oldham, Justin M. [2 ,8 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL USA
[2] Univ Michigan, Div Pulm & Crit Care Med, Ann Arbor, MI 48109 USA
[3] Univ Chicago, Div Pulm & Crit Care Med, Chicago, IL USA
[4] Imbio Inc, Minneapolis, MN USA
[5] Univ Calif Davis, Dept Radiol, Sacramento, CA USA
[6] Stanford Univ, Dept Radiol, Palo Alto, CA USA
[7] Heart & Lung Imaging Ltd, London, England
[8] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USA
关键词
deep learning; idiopathic pulmonary fibrosis; interstitial lung disease; progressive pulmonary fibrosis; radiomic; usual interstitial pneumonia; IDIOPATHIC PULMONARY-FIBROSIS; SURGICAL LUNG-BIOPSY; DIAGNOSIS; DISEASE; AGREEMENT;
D O I
10.1016/j.chest.2023.10.012
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BACKGROUND: Because chest CT scan has largely supplanted surgical lung biopsy for diagnosing most cases of interstitial lung disease (ILD), tools to standardize CT scan interpretation are urgently needed. RESEARCH QUESTION: Does a deep learning (DL)-based classifier for usual interstitial pneumonia (UIP) derived using CT scan features accurately discriminate radiologist-determined visual UIP? STUDY DESIGN AND METHODS: A retrospective cohort study was performed. Chest CT scans acquired in individuals with and without ILD were drawn from a variety of public and private data sources. Using radiologist-determined visual UIP as ground truth, a convolutional neural network was used to learn discrete CT scan features of UIP, with outputs used to predict the likelihood of UIP using a linear support vector machine. Test performance characteristics were assessed in an independent performance cohort and multicenter ILD clinical cohort. Transplant -free survival was compared between UIP classification approaches using the Kaplan -Meier estimator and Cox proportional hazards regression. RESULTS: A total of 2,907 chest CT scans were included in the training (n = 1,934), validation (n = 408), and performance (n = 565) data sets. The prevalence of radiologist-determined visual UIP was 12.4% and 37.1% in the performance and ILD clinical cohorts, respectively. The DL-based UIP classifier predicted visual UIP in the performance cohort with sensitivity and specificity of 93% and 86%, respectively, and in the multicenter ILD clinical cohort with 81% and 77%, respectively. DL-based and visual UIP classification similarly discriminated survival, and outcomes were consistent among cases with positive DL-based UIP classifica- tion irrespective of visual classification. INTERPRETATION: A DL-based classifier for UIP demonstrated good test performance across a wide range of UIP prevalence and similarly discriminated survival when compared with radiologist-determined UIP. This automated tool could efficiently screen for UIP in patients undergoing chest CT scan and identify a high -risk phenotype among those with known ILD. CHEST 2024; 165(2):371-380
引用
收藏
页码:371 / 380
页数:10
相关论文
共 50 条
  • [1] Deep Learning-based Classification of Usual Interstitial Pneumonia on Computed Tomography Is Associated With Progression of Interstitial Lung Abnormalities in the COPDGene Study
    Humphries, S. M.
    Thieke, D.
    Ash, S.
    Hatabu, H.
    Hunninghake, G. M.
    Lynch, D. A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [2] Validation of Deep Learning-Based Diagnostic Likelihoods of Usual Interstitial Pneumonia on Baseline Computed Tomography in the Australian IPF Registry
    Jo, H.
    Corte, T. J.
    Calandriello, L.
    Silva, M.
    Sverzellati, N.
    Humphries, S. M.
    Lynch, D. A.
    Chapman, S.
    Cooper, W.
    Ellis, S.
    Glaspole, I.
    Goh, N.
    Grainge, C.
    Hopkins, P.
    Keir, G. J.
    Maher, A.
    Moodley, Y. I.
    Reynolds, P. N.
    Walters, E. H.
    Zappala, C. J.
    Leigh, L.
    Oldmeadow, C.
    Heinze, S.
    McCormack, S.
    Miller, A.
    Ng, B.
    Rouse, H.
    Walsh, S. L.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201
  • [3] Deep Learning Classification of Usual Interstitial Pneumonia Predicts Outcomes
    Humphries, Stephen M.
    Thieke, Devlin
    Baraghoshi, David
    Strand, Matthew J.
    Swigris, Jeffrey J.
    Chae, Kum Ju
    Hwang, Hye Jeon
    Oh, Andrea S.
    Flaherty, Kevin R.
    Adegunsoye, Ayodeji
    Jablonski, Renea
    Lee, Cathryn T.
    Husain, Aliya N.
    Chung, Jonathan H.
    Strek, Mary E.
    Lynch, David A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209 (09) : 1121 - 1131
  • [4] Analytical performance of Envisia: a genomic classifier for usual interstitial pneumonia
    Choi, Yoonha
    Lu, Jiayi
    Hu, Zhanzhi
    Pankratz, Daniel G.
    Jiang, Huimin
    Cao, Manqiu
    Marchisano, Cristina
    Huiras, Jennifer
    Fedorowicz, Grazyna
    Wong, Mei G.
    Anderson, Jessica R.
    Tom, Edward Y.
    Babiarz, Joshua
    Imtiaz, Urooj
    Barth, Neil M.
    Walsh, P. Sean
    Kennedy, Giulia C.
    Huang, Jing
    BMC PULMONARY MEDICINE, 2017, 17
  • [5] Cryobiopsy and Genomic Classifier (Envisia) in the Diagnosis of Usual Interstitial Pneumonia
    Ronaghi, R.
    Carroll, M.
    He, T.
    Oberg, C.
    Channick, C. L.
    Susanto, I
    Oh, S. S.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [6] Analytical performance of Envisia: a genomic classifier for usual interstitial pneumonia
    Yoonha Choi
    Jiayi Lu
    Zhanzhi Hu
    Daniel G. Pankratz
    Huimin Jiang
    Manqiu Cao
    Cristina Marchisano
    Jennifer Huiras
    Grazyna Fedorowicz
    Mei G. Wong
    Jessica R. Anderson
    Edward Y. Tom
    Joshua Babiarz
    Urooj Imtiaz
    Neil M. Barth
    P. Sean Walsh
    Giulia C. Kennedy
    Jing Huang
    BMC Pulmonary Medicine, 17
  • [7] Prospective Validation Of A Genomic Classifier For Usual Interstitial Pneumonia In Transbronchial Biopsies
    Brown, K. K.
    Choi, Y.
    Colby, T. V.
    Flaherty, K. R.
    Groshong, S.
    Imtiaz, U.
    Lynch, D. A.
    Myers, J. L.
    Steele, M. P.
    Martinez, F. J.
    Pankratz, D. G.
    Walsh, P. S.
    Huang, J.
    Barth, N. M.
    Raghu, G.
    Kennedy, G. C.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [8] Analytical Performance Of Envisia: A Genomic Classifier For Usual Interstitial Pneumonia Pattern
    Walsh, P.
    Choi, Y.
    Lu, J.
    Pankratz, D. G.
    Marchisano, C.
    Clarke, J.
    Fedorowicz, G.
    Jiang, H.
    Cao, M.
    Wong, M.
    Tom, E.
    Barbiarz, J.
    Anderson, J.
    Hu, Z.
    Huang, J.
    Kennedy, G. C.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [9] USUAL INTERSTITIAL PNEUMONIA AND DESQUAMATIVE INTERSTITIAL PNEUMONIA
    GAENSLER, EA
    CARRINGTON, CB
    FITZGERALD, MX
    COUTU, RE
    AMERICAN REVIEW OF RESPIRATORY DISEASE, 1975, 111 (06): : 905 - 906
  • [10] Visualizing Deep Learning-Based Radio Modulation Classifier
    Huang, Liang
    Zhang, You
    Pan, Weijian
    Chen, Jinyin
    Qian, Li Ping
    Wu, Yuan
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) : 47 - 58