A Deep Learning-Based Radiomic Classifier for Usual Interstitial Pneumonia
被引:5
|
作者:
Chung, Jonathan H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Radiol, Chicago, IL USAUniv Chicago, Dept Radiol, Chicago, IL USA
Chung, Jonathan H.
[1
]
Chelala, Lydia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Radiol, Chicago, IL USAUniv Chicago, Dept Radiol, Chicago, IL USA
Chelala, Lydia
[1
]
Pugashetti, Janelle Vu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Div Pulm & Crit Care Med, Ann Arbor, MI 48109 USAUniv Chicago, Dept Radiol, Chicago, IL USA
Pugashetti, Janelle Vu
[2
]
Wang, Jennifer M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Div Pulm & Crit Care Med, Ann Arbor, MI 48109 USAUniv Chicago, Dept Radiol, Chicago, IL USA
Wang, Jennifer M.
[2
]
论文数: 引用数:
h-index:
机构:
Adegunsoye, Ayodeji
[3
]
Matyga, Alexander W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Radiol, Chicago, IL USAUniv Chicago, Dept Radiol, Chicago, IL USA
Matyga, Alexander W.
[1
]
Keith, Lauren
论文数: 0引用数: 0
h-index: 0
机构:
Imbio Inc, Minneapolis, MN USAUniv Chicago, Dept Radiol, Chicago, IL USA
Keith, Lauren
[4
]
Ludwig, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Imbio Inc, Minneapolis, MN USAUniv Chicago, Dept Radiol, Chicago, IL USA
Ludwig, Kai
[4
]
Zafari, Sahar
论文数: 0引用数: 0
h-index: 0
机构:
Imbio Inc, Minneapolis, MN USAUniv Chicago, Dept Radiol, Chicago, IL USA
Zafari, Sahar
[4
]
Ghodrati, Sahand
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Radiol, Sacramento, CA USAUniv Chicago, Dept Radiol, Chicago, IL USA
Ghodrati, Sahand
[5
]
Ghasemiesfe, Ahmadreza
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Radiol, Sacramento, CA USAUniv Chicago, Dept Radiol, Chicago, IL USA
Ghasemiesfe, Ahmadreza
[5
]
Guo, Henry
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Radiol, Palo Alto, CA USAUniv Chicago, Dept Radiol, Chicago, IL USA
Guo, Henry
[6
]
Soo, Eleanor
论文数: 0引用数: 0
h-index: 0
机构:
Heart & Lung Imaging Ltd, London, EnglandUniv Chicago, Dept Radiol, Chicago, IL USA
Soo, Eleanor
[7
]
Lyen, Stephen
论文数: 0引用数: 0
h-index: 0
机构:
Heart & Lung Imaging Ltd, London, EnglandUniv Chicago, Dept Radiol, Chicago, IL USA
Lyen, Stephen
[7
]
Sayer, Charles
论文数: 0引用数: 0
h-index: 0
机构:
Heart & Lung Imaging Ltd, London, EnglandUniv Chicago, Dept Radiol, Chicago, IL USA
Sayer, Charles
[7
]
Hatt, Charles
论文数: 0引用数: 0
h-index: 0
机构:
Imbio Inc, Minneapolis, MN USAUniv Chicago, Dept Radiol, Chicago, IL USA
Hatt, Charles
[4
]
Oldham, Justin M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Div Pulm & Crit Care Med, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USAUniv Chicago, Dept Radiol, Chicago, IL USA
Oldham, Justin M.
[2
,8
]
机构:
[1] Univ Chicago, Dept Radiol, Chicago, IL USA
[2] Univ Michigan, Div Pulm & Crit Care Med, Ann Arbor, MI 48109 USA
[3] Univ Chicago, Div Pulm & Crit Care Med, Chicago, IL USA
[4] Imbio Inc, Minneapolis, MN USA
[5] Univ Calif Davis, Dept Radiol, Sacramento, CA USA
[6] Stanford Univ, Dept Radiol, Palo Alto, CA USA
[7] Heart & Lung Imaging Ltd, London, England
[8] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USA
BACKGROUND: Because chest CT scan has largely supplanted surgical lung biopsy for diagnosing most cases of interstitial lung disease (ILD), tools to standardize CT scan interpretation are urgently needed. RESEARCH QUESTION: Does a deep learning (DL)-based classifier for usual interstitial pneumonia (UIP) derived using CT scan features accurately discriminate radiologist-determined visual UIP? STUDY DESIGN AND METHODS: A retrospective cohort study was performed. Chest CT scans acquired in individuals with and without ILD were drawn from a variety of public and private data sources. Using radiologist-determined visual UIP as ground truth, a convolutional neural network was used to learn discrete CT scan features of UIP, with outputs used to predict the likelihood of UIP using a linear support vector machine. Test performance characteristics were assessed in an independent performance cohort and multicenter ILD clinical cohort. Transplant -free survival was compared between UIP classification approaches using the Kaplan -Meier estimator and Cox proportional hazards regression. RESULTS: A total of 2,907 chest CT scans were included in the training (n = 1,934), validation (n = 408), and performance (n = 565) data sets. The prevalence of radiologist-determined visual UIP was 12.4% and 37.1% in the performance and ILD clinical cohorts, respectively. The DL-based UIP classifier predicted visual UIP in the performance cohort with sensitivity and specificity of 93% and 86%, respectively, and in the multicenter ILD clinical cohort with 81% and 77%, respectively. DL-based and visual UIP classification similarly discriminated survival, and outcomes were consistent among cases with positive DL-based UIP classifica- tion irrespective of visual classification. INTERPRETATION: A DL-based classifier for UIP demonstrated good test performance across a wide range of UIP prevalence and similarly discriminated survival when compared with radiologist-determined UIP. This automated tool could efficiently screen for UIP in patients undergoing chest CT scan and identify a high -risk phenotype among those with known ILD. CHEST 2024; 165(2):371-380
机构:
Jeonbuk Natl Univ, Jeonbuk Natl Univ Hosp, Dept Radiol, Jeonbuk Natl Univ & Med Sch,Biomed Res Inst,Res In, Jeonju, South KoreaUniv Kansas, Dept Internal Med, Sch Med, Kansas City, KS USA
Chae, Kum Ju
Jin, Gong Yong
论文数: 0引用数: 0
h-index: 0
机构:
Jeonbuk Natl Univ, Jeonbuk Natl Univ Hosp, Dept Radiol, Jeonbuk Natl Univ & Med Sch,Biomed Res Inst,Res In, Jeonju, South KoreaUniv Kansas, Dept Internal Med, Sch Med, Kansas City, KS USA
Jin, Gong Yong
Lin, Ching-Long
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Mech Engn, Iowa City, IA USA
Univ Iowa, IIIHR Hydrosci & Engn, Iowa City, IA USA
Univ Iowa, Dept Biomed Engn, Iowa City, IA USAUniv Kansas, Dept Internal Med, Sch Med, Kansas City, KS USA
Lin, Ching-Long
Laroia, Archana T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Univ Iowa Hosp & Clin, Dept Radiol, Iowa, IA 52242 USAUniv Kansas, Dept Internal Med, Sch Med, Kansas City, KS USA
Laroia, Archana T.
Hoffman, Eric A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Univ Iowa Hosp & Clin, Dept Radiol, Iowa, IA 52242 USAUniv Kansas, Dept Internal Med, Sch Med, Kansas City, KS USA