Environmental radon control in the 700 m underground laboratory at JUNO

被引:0
|
作者
Cui, Chenyang [1 ,2 ]
Zhao, Jie [1 ]
Li, Gaosong [1 ]
Zhang, Yongpeng [1 ]
Guo, Cong [1 ]
Qu, Zhenning [1 ,2 ]
Wang, Yifang [1 ]
Li, Xiaonan [1 ]
Wen, Liangjian [1 ]
He, Miao [1 ]
Sisti, Monica [3 ,4 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] INFN Milano Bicocca, Milan, Italy
[4] Univ Milano Bicocca, Milan, Italy
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 02期
关键词
Atomic physics - Groundwater - Neutrons - Ventilation;
D O I
10.1140/epjc/s10052-024-12474-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Jiangmen Underground Neutrino Observatory is constructing the world's largest liquid scintillator detector, with a 20 kt target mass and approximately 700 m of overburden. The total underground space of civil construction is around 300,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}, with the main hall comprising about 120,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}, making it the largest experimental hall in the world. Maintaining a low radon concentration in the underground air is crucial for both human health and the accuracy of experiments involving rare decay detection, such as neutrino and dark matter experiments. To ensure human health and the integrity of neutrino physics experiments, the nominal radon concentration in the main hall must be kept below 200 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document} with a maximum value below 400 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}. Introduction of fresh air from above ground can significantly lower radon concentration. A benchmark experiment conducted in the refuge room near the main hall revealed that the radon emanating from underground water is a significant source of radon in the underground air. The total underground ventilation rate is approximately 160,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}/h of fresh air with about 30 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}222\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{222}$$\end{document}Rn from the bottom of the vertical tunnel after the installation of powerful fans. Of this, 55,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}/h is used for ventilation in the main hall. As a result of these measures, the radon concentration inside the main hall has decreased from 1600 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document} to below 200 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document} under stable working conditions, with exceptions during rare adverse weather events or fan failures. The employed strategies to control radon concentration in the underground air are described in this paper.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Environmental radon control in the 700 m underground laboratory at JUNO
    Chenyang Cui
    Jie Zhao
    Gaosong Li
    Yongpeng Zhang
    Cong Guo
    Zhenning Qu
    Yifang Wang
    Xiaonan Li
    Liangjian Wen
    Miao He
    Monica Sisti
    [J]. The European Physical Journal C, 84
  • [2] Radon measurements in the Gran Sasso underground laboratory
    Arpesella, C
    Bam, BB
    Bassignani, A
    Cecchini, S
    Colombo, G
    Dekhissi, H
    Fantoni, RF
    Giacomelli, G
    Lembo, L
    Maltoni, G
    Mandrioli, G
    Patrizii, L
    Sartorio, C
    Serra, P
    Togo, V
    Vilela, E
    [J]. HEALTH PHYSICS, 1997, 72 (04): : 629 - 632
  • [3] Radon concentration variations at the Yangyang underground laboratory
    Ha, C.
    Jeong, Y.
    Kang, W. G.
    Kim, J.
    Kim, K. W.
    Kim, S. K.
    Kim, Y. D.
    Lee, H. S.
    Lee, M. H.
    Lee, M. J.
    Lee, Y. J.
    Seo, K. M.
    [J]. FRONTIERS IN PHYSICS, 2022, 10
  • [4] Radon problem in an underground low-level laboratory
    Udovicic, V.
    Grabez, B.
    Dragic, A.
    Banjanac, R.
    Jokovic, D.
    Panic, B.
    Joksimovic, D.
    Puzovic, J.
    Anicin, I.
    [J]. RADIATION MEASUREMENTS, 2009, 44 (9-10) : 1009 - 1012
  • [5] Effect of atmospheric temperature on underground radon: A laboratory experiment
    Haquin, Gustavo
    Zafrir, Hovav
    Ilzycer, Danielle
    Weisbrod, Noam
    [J]. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2022, 253-254
  • [6] Environmental and radon measurements in the underground workplaces in the Czech Republic
    Thinova, Lenka
    Rovenska, Katerina
    Otahal, Petr
    [J]. NUKLEONIKA, 2010, 55 (04) : 491 - 493
  • [7] CORRELATIVE AND MULTIVARIATE ANALYSIS OF INCREASED RADON CONCENTRATION IN UNDERGROUND LABORATORY
    Maletic, Dimitrije M.
    Udovicic, Vladimir I.
    Banjanac, Radomir M.
    Jokovic, Dejan R.
    Dragic, Aleksandar L.
    Veselinovic, Nikola B.
    Filipovic, Jelena
    [J]. RADIATION PROTECTION DOSIMETRY, 2014, 162 (1-2) : 148 - 151
  • [8] Radon Monitoring and Early Low Background Counting at the Sanford Underground Laboratory
    Thomas, K. J.
    Mei, D. -M.
    Heise, J.
    Durben, D.
    Salve, R.
    [J]. TOPICAL WORKSHOP ON LOW RADIOACTIVITY TECHNIQUES - LRT 2010, 2011, 1338 : 81 - +
  • [9] The use of multivariate analysis of the radon variability in the underground laboratory and indoor environment
    Filipovic, Jelena
    Maletic, Dimitrije
    Udovicic, Vladimir
    Banjanac, Radomir
    Jokovic, Dejan
    Savic, Mihailo
    Veselinovic, Nikola
    [J]. NUKLEONIKA, 2016, 61 (03) : 357 - 360
  • [10] Intercomparison of radon and decay product measurements in an underground mine and EPA Radon Laboratory: A study organized by the IAEA international radon metrology programme
    Budd, G
    Hopper, R
    Braganza, E
    Ronca-Battista, M
    Steinhausler, F
    Stegner, P
    [J]. HEALTH PHYSICS, 1998, 75 (05): : 465 - 474