CMOS Compatible Low Power Consumption Ferroelectric Synapse for Neuromorphic Computing

被引:11
|
作者
Li, Zhenhai [1 ,2 ,3 ]
Meng, Jialin [1 ,2 ,3 ]
Yu, Jiajie [1 ,2 ,3 ]
Liu, Yongkai [1 ,2 ,3 ]
Wang, Tianyu [1 ,2 ,3 ]
Liu, Pei [1 ,2 ,3 ]
Chen, Shiyou [1 ,2 ,3 ]
Zhu, Hao [1 ,2 ,3 ]
Sun, Qingqing [1 ,2 ,3 ]
Zhang, David Wei [1 ,2 ,3 ]
Chen, Lin [1 ,2 ,3 ]
机构
[1] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
[2] Zhangjiang Fudan Int Innovat Ctr, Shanghai 201203, Peoples R China
[3] Jiashan Fudan Inst, Jiaxing 314100, Zhejiang, Peoples R China
基金
中国博士后科学基金;
关键词
HfO2-based FTJ; first-principles calculations; synaptic devices; neuromorphic computing; MEMRISTOR;
D O I
10.1109/LED.2023.3234690
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the development of bioelectronics, brain-inspired artificial synapses become more and more important. To simulate artificial synapse, a HfAlO ferroelectric tunnel junction (FTJ) was fabricated, which can simulate short-term synaptic plasticity for neuromorphic computing. The devices realize the synaptic function with low power consumption of about 7.15 aJ per synaptic event. Moreover, to explore the effect of oxygen defects on ferroelectric properties of HfAlO-based device, the first-principle analysis was further carried out. These results pave the way of hafnium-based ferroelectric synaptic devices.
引用
收藏
页码:532 / 535
页数:4
相关论文
共 50 条
  • [31] Tunable magnetic synapse for reliable neuromorphic computing
    Mou, Hongming
    Luo, Zhaochu
    Zhang, Xiaozhong
    APPLIED PHYSICS LETTERS, 2024, 125 (04)
  • [32] ZnO nanowire optoelectronic synapse for neuromorphic computing
    Shen, Cong
    Gao, Xu
    Chen, Cheng
    Ren, Shan
    Xu, Jian-Long
    Xia, Yi-Dong
    Wang, Sui-Dong
    NANOTECHNOLOGY, 2022, 33 (06)
  • [33] CMOS-Compatible Embedded Artificial Synaptic Device (eASD) for Neuromorphic Computing and AI Applications
    Huang, Yao-Hung
    Yu, Hsin-Yuan
    Chih, Yue-Der
    Wang, Yih
    King, Ya-Chin
    Lin, Chrong Jung
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (02) : 1313 - 1319
  • [34] Novel ferroelectric FET based synapse for neuromorphic systems
    Mulaosmanovic, H.
    Ocker, J.
    Mueller, S.
    Noack, M.
    Mueller, J.
    Polakowski, P.
    Mikolajick, T.
    Slesazeck, S.
    2017 SYMPOSIUM ON VLSI TECHNOLOGY, 2017, : T176 - T177
  • [35] Ferroelectric Field Effect Transistors as a Synapse for Neuromorphic Application
    Lederer, M.
    Kampfe, T.
    Ali, T.
    Muller, F.
    Olivo, R.
    Hoffmann, R.
    Laleni, N.
    Seidel, K.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (05) : 2295 - 2300
  • [36] CMOS-Compatible Fabrication of Low-Power Ferroelectric Tunnel Junction for Neural Network Applications
    Kuo, Yi-Shan
    Lee, Shen-Yang
    Lee, Chia-Chin
    Li, Shou-Wei
    Chao, Tien-Sheng
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (02) : 879 - 884
  • [37] Sub-10 nm HfZrO ferroelectric synapse with multiple layers and different ratios for neuromorphic computing
    Chen, Bo
    Wang, Chengcheng
    Zhan, Xuepeng
    Wu, Shuhao
    Tai, Lu
    Mei, Junyao
    Wu, Jixuan
    Chen, Jiezhi
    NANOTECHNOLOGY, 2023, 34 (50)
  • [38] Polarized Tunneling Transistor for Ultralow-Energy-Consumption Artificial Synapse toward Neuromorphic Computing
    Chen, Jing
    Zhao, Xue-Chun
    Zhu, Ye-Qing
    Wang, Zheng-Hua
    Zhang, Zheng
    Sun, Ming-Yuan
    Wang, Shuai
    Zhang, Yu
    Han, Lin
    Wu, Xiao-Ming
    Ren, Tian-Ling
    ACS NANO, 2023, 18 (01) : 581 - 591
  • [39] Memristive and CMOS Devices for Neuromorphic Computing
    Milo, Valerio
    Malavena, Gerardo
    Compagnoni, Christian Monzio
    Ielmini, Daniele
    MATERIALS, 2020, 13 (01) : 166
  • [40] Carbon Nanotube Optoelectronic Synapse Transistor Arrays with Ultra-Low Power Consumption for Stretchable Neuromorphic Vision Systems
    Xie, Tanghao
    Wang, Qinan
    Li, Min
    Fang, Yuxiao
    Li, Gang
    Shao, Shuangshuang
    Yu, Wenbo
    Wang, Suyun
    Gu, Weibing
    Zhao, Chun
    Tang, Minghua
    Zhao, Jianwen
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (37)