Deformation prediction of rock cut slope based on long short-term memory neural network

被引:5
|
作者
Wang, Sichang [1 ,2 ]
Lyu, Tian-le [1 ]
Luo, Naqing [1 ,3 ]
Chang, Pengcheng [1 ,4 ]
机构
[1] Chongqing Univ Sci & Technol, Sch Civil Engn & Architecture, Chongqing 401331, Peoples R China
[2] Chongqing Key Lab Energy Engn Mech & Disaster Pre, Chongqing 401331, Peoples R China
[3] Chongqing Ruode Technol Co LTD, Chongqing 401331, Peoples R China
[4] Chongqing Inst Safety Prod Sci Co LTD, Chongqing 401331, Peoples R China
关键词
Cut slope; Slope deformation prediction; Wavelet decomposition; Long short-term memory network; Particle swarm optimization; GROUP DECISION-MAKING; FUZZY PREFERENCE RELATIONS; CONSISTENCY; COMPATIBILITY; AGGREGATION;
D O I
10.1007/s13042-023-01939-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The cut slope graben is affected by the lithology of strata, rainfall, and man-made excavation, which is a complex geotechnical system. Deformation of a cut slope changes irregularly with time, and, if too large, the deformation causes geological disasters such as landslides. Thus, it is crucial to establish an accurate slope deformation prediction model for control and safety. We used wavelet decomposition (WD) to process the time series of slope deformation to obtain an approximate series and detailed series. Then to predict each sub-series, we used the improved particle swarm optimization (IPSO) algorithm to optimize the number of neurons in the hidden layer, the learning rate, and the number of iterations of a long short-term memory (LSTM) neural network. The prediction results were summed to obtain the final prediction. The hybrid WD-IPSO-LSTM prediction model had a mean absolute error of 0.047, 0.067, and 0.094 at 1, 3, and 6 steps, respectively. These errors were 47.19%, 49.62%, and 57.47% lower than the LSTM-alone model errors. The hybrid WD-IPSO-LSTM prediction model had greater accuracy compared with a back propagation neural network, recurrent neural network, LSTM alone, PSO-LSTM, and IPSO-LSTM in 1-step, 3-step, and 6-step prediction. In addition, our hybrid model for prediction of slope deformation was more realistic and credible compared with other models.
引用
收藏
页码:795 / 805
页数:11
相关论文
共 50 条
  • [41] Storm Surge Prediction Based on Long Short-Term Memory Neural Network in the East China Sea
    Chen, Kuo
    Kuang, Cuiping
    Wang, Lei
    Chen, Ke
    Han, Xuejian
    Fan, Jiadong
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [42] Prediction model of dissolved oxygen in aquaculture based on improved long short-term memory neural network
    Cao S.
    Zhou L.
    Zhang Z.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (14): : 235 - 242
  • [43] PREDICTION OF MECHANICAL PROPERTIES OF COMPOSITE MATERIALS BASED ON CONVOLUTIONAL NEURAL NETWORK-LONG AND SHORT-TERM MEMORY NEURAL NETWORK
    Huang, P.
    Dong, J. C.
    Han, X. C.
    Qi, Y. P.
    Xiao, Y. M.
    Leng, H. Y.
    METALURGIJA, 2024, 63 (3-4): : 369 - 372
  • [44] Water level prediction of Liuxihe Reservoir based on improved long short-term memory neural network
    Li, Youming
    Qu, Jia
    Zhang, Haosen
    Long, Yan
    Li, Shu
    WATER SUPPLY, 2023, 23 (11) : 4563 - 4582
  • [45] Air Quality Index Prediction Based on a Long Short-Term Memory Artificial Neural Network Model
    Wang, Chen
    Liu, Bingchun
    Chen, Jiali
    Yu, Xiaogang
    Journal of Computers (Taiwan), 2023, 34 (02) : 69 - 79
  • [46] A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network
    Park, Junbeom
    Chang, Seongju
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (13)
  • [47] Underground Railway Station Passenger Flow Prediction Based on Long Short-Term Memory Neural Network
    Shao, Yuyang
    Ng, S. Thomas
    Kwok, C. Y.
    Fan, Shushu
    Cheng, Reynold
    COMPUTING IN CIVIL ENGINEERING 2023-DATA, SENSING, AND ANALYTICS, 2024, : 133 - 140
  • [48] Power MOSFET Lifetime Prediction Method Based on Optimized Long Short-Term Memory Neural Network
    Ren, Hongyu
    Du, Xiong
    Yu, Yaoyi
    Wang, Jing
    Zhou, Junjie
    Peng, Yuhao
    2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [49] Wind speed prediction using hybrid long short-term memory neural network based approach
    Yadav, G. Rakesh
    Muneender, E.
    Santhosh, M.
    2021 INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND FUTURE ELECTRIC TRANSPORTATION (SEFET), 2021,
  • [50] Temperature prediction based on long short-term memory convolutional neural network Bragg grating sensing
    Shao, Xiangxin
    Chang, Shige
    Zhao, Yihan
    Jiang, Hong
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2024, 66 (06)