Deformation prediction of rock cut slope based on long short-term memory neural network

被引:5
|
作者
Wang, Sichang [1 ,2 ]
Lyu, Tian-le [1 ]
Luo, Naqing [1 ,3 ]
Chang, Pengcheng [1 ,4 ]
机构
[1] Chongqing Univ Sci & Technol, Sch Civil Engn & Architecture, Chongqing 401331, Peoples R China
[2] Chongqing Key Lab Energy Engn Mech & Disaster Pre, Chongqing 401331, Peoples R China
[3] Chongqing Ruode Technol Co LTD, Chongqing 401331, Peoples R China
[4] Chongqing Inst Safety Prod Sci Co LTD, Chongqing 401331, Peoples R China
关键词
Cut slope; Slope deformation prediction; Wavelet decomposition; Long short-term memory network; Particle swarm optimization; GROUP DECISION-MAKING; FUZZY PREFERENCE RELATIONS; CONSISTENCY; COMPATIBILITY; AGGREGATION;
D O I
10.1007/s13042-023-01939-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The cut slope graben is affected by the lithology of strata, rainfall, and man-made excavation, which is a complex geotechnical system. Deformation of a cut slope changes irregularly with time, and, if too large, the deformation causes geological disasters such as landslides. Thus, it is crucial to establish an accurate slope deformation prediction model for control and safety. We used wavelet decomposition (WD) to process the time series of slope deformation to obtain an approximate series and detailed series. Then to predict each sub-series, we used the improved particle swarm optimization (IPSO) algorithm to optimize the number of neurons in the hidden layer, the learning rate, and the number of iterations of a long short-term memory (LSTM) neural network. The prediction results were summed to obtain the final prediction. The hybrid WD-IPSO-LSTM prediction model had a mean absolute error of 0.047, 0.067, and 0.094 at 1, 3, and 6 steps, respectively. These errors were 47.19%, 49.62%, and 57.47% lower than the LSTM-alone model errors. The hybrid WD-IPSO-LSTM prediction model had greater accuracy compared with a back propagation neural network, recurrent neural network, LSTM alone, PSO-LSTM, and IPSO-LSTM in 1-step, 3-step, and 6-step prediction. In addition, our hybrid model for prediction of slope deformation was more realistic and credible compared with other models.
引用
收藏
页码:795 / 805
页数:11
相关论文
共 50 条
  • [21] Prediction of ionospheric TEC over China based on long and short-term memory neural network
    Xiong Bo
    Li XiaoLin
    Wang YuQing
    Zhang HanMing
    Liu ZiJun
    Ding Feng
    Zhao BiQiang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (07): : 2365 - 2377
  • [22] Water level prediction of Lake Poyang based on long short-term memory neural network
    Guo Y.
    Lai X.
    Lai, Xijun (xjlai@niglas.ac.cn), 1600, Science Press (32): : 865 - 876
  • [23] IGBT Lifetime Prediction Model Based on Optimized Long Short-Term Memory Neural Network
    Ren H.
    Yu Y.
    Du X.
    Liu J.
    Zhou J.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2024, 39 (04): : 1074 - 1086
  • [24] Remaining useful life prediction for supercapacitor based on long short-term memory neural network
    Zhou, Yanting
    Huang, Yinuo
    Pang, Jinbo
    Wang, Kai
    JOURNAL OF POWER SOURCES, 2019, 440
  • [25] Prediction of Upper Limb Action Intention Based on Long Short-Term Memory Neural Network
    Cui, Jianwei
    Li, Zhigang
    ELECTRONICS, 2022, 11 (09)
  • [26] Analysis and Prediction of Hourly Energy Consumption Based on Long Short-Term Memory Neural Network
    Akter, Rubina
    Lee, Jae-Min
    Kim, Dong-Seong
    35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021), 2021, : 732 - 734
  • [27] Convolutional long short-term memory neural network for groundwater change prediction
    Patra, Sumriti Ranjan
    Chu, Hone-Jay
    FRONTIERS IN WATER, 2024, 6
  • [28] Stock Price Prediction With Long Short-Term Memory Recurrent Neural Network
    Jeenanunta, Chawalit
    Chaysiri, Rujira
    Thong, Laksmey
    2018 INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS AND INTELLIGENT TECHNOLOGY & INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (ICESIT-ICICTES), 2018,
  • [29] Remaining Useful Life Prediction Method Based on Convolutional Neural Network and Long Short-Term Memory Neural Network
    Zhao, Kaisheng
    Zhang, Jing
    Chen, Shaowei
    Wen, Pengfei
    Ping, Wang
    Zhao, Shuai
    2023 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM, 2023, : 336 - 343
  • [30] Network Security Situation Prediction Based on Long Short-Term Memory Network
    Shang, Li
    Zhao, Wei
    Zhang, Jiaju
    Fu, Qiang
    Zhao, Qian
    Yang, Yang
    2019 20TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2019,