Distribution of Zeros and Critical Points of a Polynomial, and Sendov's Conjecture

被引:0
|
作者
Sofi, G. M. [1 ]
Shah, W. M. [1 ]
机构
[1] Cent Univ Kashmir, Kashmir, India
关键词
polynomials; zeros; critical points;
D O I
10.3103/S1068362323050084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
According to the Gauss-Lucas theorem, the critical points of a complex polynomial p(z):= Sigma(n )(j=0)a(j)z(j) where a(j) always lie in the convex hull of its zeros. In this paper, we prove certain relations between the distribution of zeros of a polynomial and its critical points. Using these relations, we prove the well-known Sendov's conjecture for certain special cases.
引用
收藏
页码:384 / 388
页数:5
相关论文
共 50 条
  • [1] Distribution of Zeros and Critical Points of a Polynomial, and Sendov’s Conjecture
    G. M. Sofi
    W. M. Shah
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2023, 58 : 384 - 388
  • [2] ON SENDOV'S CONJECTURE ABOUT CRITICAL POINTS OF A POLYNOMIAL
    Nazir, Ishfaq
    Mir, Mohammad Ibrahim
    Wani, Irfan Ahmad
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 825 - 831
  • [3] A note on the structure of the zeros of a polynomial and Sendov's conjecture
    Sofi, G. M.
    Shah, W. M.
    CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (03): : 515 - 521
  • [4] ON A CONJECTURE OF SENDOV ABOUT THE CRITICAL-POINTS OF A POLYNOMIAL
    BOJANOV, BD
    RAHMAN, QI
    SZYNAL, J
    MATHEMATISCHE ZEITSCHRIFT, 1985, 190 (02) : 281 - 285
  • [5] ON A PROBLEM RELATED TO THE CONJECTURE OF SENDOV ABOUT THE CRITICAL-POINTS OF A POLYNOMIAL
    RAHMAN, QI
    TARIQ, QM
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (04): : 476 - 480
  • [6] On Sendov?s conjecture
    Cotirla, Luminita-Ioana
    Szasz, Robert
    FILOMAT, 2023, 37 (16) : 5283 - 5286
  • [7] On Sendov's Conjecture
    Sofi, G. M.
    Shah, W. M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 493 - 497
  • [8] On Sendov’s Conjecture
    G. M. Sofi
    W. M. Shah
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 493 - 497
  • [9] Majorization of the Critical Points of a Polynomial by Its Zeros
    Gerhard Schmeisser
    Computational Methods and Function Theory, 2004, 3 (1) : 95 - 103
  • [10] ON THE ILYEFF-SENDOV CONJECTURE FOR POLYNOMIALS WITH AT MOST 5 ZEROS
    KUMAR, S
    SHENOY, BG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 171 (02) : 595 - 600