Distribution of Zeros and Critical Points of a Polynomial, and Sendov's Conjecture

被引:0
|
作者
Sofi, G. M. [1 ]
Shah, W. M. [1 ]
机构
[1] Cent Univ Kashmir, Kashmir, India
关键词
polynomials; zeros; critical points;
D O I
10.3103/S1068362323050084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
According to the Gauss-Lucas theorem, the critical points of a complex polynomial p(z):= Sigma(n )(j=0)a(j)z(j) where a(j) always lie in the convex hull of its zeros. In this paper, we prove certain relations between the distribution of zeros of a polynomial and its critical points. Using these relations, we prove the well-known Sendov's conjecture for certain special cases.
引用
收藏
页码:384 / 388
页数:5
相关论文
共 50 条
  • [31] On the Location of Critical Points of a Polynomial
    Mohammad Ibrahim Mir
    Ishfaq Nazir
    Irfan Ahmad Wani
    Computational Methods and Function Theory, 2023, 23 : 125 - 132
  • [32] On the Location of Critical Points of a Polynomial
    Mir, Mohammad Ibrahim
    Nazir, Ishfaq
    Wani, Irfan Ahmad
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2023, 23 (01) : 125 - 132
  • [33] SEPARATION OF THE CRITICAL POINTS OF A POLYNOMIAL
    Sendov, Blagovest
    Sendov, Hristo
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2017, 70 (05): : 607 - 610
  • [34] Baker's conjecture and Eremenko's conjecture for functions with negative zeros
    Rippon, P. J.
    Stallard, G. M.
    JOURNAL D ANALYSE MATHEMATIQUE, 2013, 120 : 291 - 309
  • [35] Baker’s conjecture and Eremenko’s conjecture for functions with negative zeros
    P. J. Rippon
    G. M. Stallard
    Journal d'Analyse Mathématique, 2013, 120 : 291 - 309
  • [36] On the distribution of the number of real zeros of a random polynomial
    Zaporozhets D.N.
    Journal of Mathematical Sciences, 2006, 137 (1) : 4525 - 4530
  • [37] Zeros Distribution of the Jones Polynomial for Pretzel Links
    Han You-fa
    Huang Dong-yue
    Wang Lin-lin
    Ma Xiao-sha
    Lei Feng-chun
    Communications in Mathematical Research, 2015, 31 (02) : 141 - 148
  • [38] On Critical Points and Zeros of Certain Discrete Potentials
    Robert Trickey
    Computational Methods and Function Theory, 2006, 6 (1) : 29 - 36
  • [39] Zeros and critical points of Sobolev orthogonal polynomials
    Gautschi, W
    Kuijlaars, ABJ
    JOURNAL OF APPROXIMATION THEORY, 1997, 91 (01) : 117 - 137
  • [40] Pairing of zeros and critical points for random polynomials
    Hanin, Boris
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (03): : 1498 - 1511