On a criterion for the existence of unconditional bases of reproducing kernels in Fock spaces with radial regular weight

被引:1
|
作者
Isaev, K. P. [1 ,2 ]
Yulmukhametov, R. S. [1 ,2 ]
机构
[1] Russian Acad Sci Inst Math UFRC RAS, Ufa Fed Res Ctr, Inst Math, Chernyshevsky Str 112, Ufa 450008, Russia
[2] Bashkir State Univ, Zaki Validi Str 32, Ufa 450074, Russia
基金
俄罗斯科学基金会;
关键词
Hilbert spaces; Entire functions; Reproducing kernels; Unconditional bases; Riesz bases; DENSITY THEOREMS; RIESZ BASES; INTERPOLATION; BERGMAN;
D O I
10.1016/j.jmaa.2022.126839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the spaces F-phi of entire functions f such that fe(-phi) is an element of L-2(C), where phi(z) = phi(|z|) is a radial subharmonic function with some regularity property. It was proved that F-phi has Riesz basis of normalized reproducing kernels if and only if (phi(e(r)))'' is bounded above. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 38 条
  • [1] On Unconditional Bases of Reproducing Kernels in Fock-Type Spaces
    Isaev, K. P.
    Yulmukhametov, R. S.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2017, 51 (04) : 283 - 292
  • [2] On unconditional bases of reproducing kernels in Fock-type spaces
    K. P. Isaev
    R. S. Yulmukhametov
    [J]. Functional Analysis and Its Applications, 2017, 51 : 283 - 292
  • [3] Unconditional Bases of Reproducing Kernels for Fock Spaces with Nonradial Weights
    Isaev K.P.
    Lutsenko A.V.
    Yulmukhametov R.S.
    [J]. Journal of Mathematical Sciences, 2022, 260 (6) : 748 - 755
  • [4] On a sufficient condition for the existence of unconditional bases of reproducing kernels in Fock type spaces with nonradial weights
    K. P. Isaev
    A. V. Lutsenko
    R. S. Yulmukhametov
    [J]. Analysis and Mathematical Physics, 2023, 13
  • [5] On a sufficient condition for the existence of unconditional bases of reproducing kernels in Fock type spaces with nonradial weights
    Isaev, K. P.
    Lutsenko, A. V.
    Yulmukhametov, R. S.
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (06)
  • [6] GEOMETRY OF RADIAL HILBERT SPACES WITH UNCONDITIONAL BASES OF REPRODUCING KERNELS
    Isaev, K. P.
    Yulmukhametov, R. S.
    [J]. UFA MATHEMATICAL JOURNAL, 2020, 12 (04): : 55 - 63
  • [7] EQUIVALENT CONDITIONS FOR THE EXISTENCE OF UNCONDITIONAL BASES OF REPRODUCING KERNELS IN SPACES OF ENTIRE FUNCTIONS
    Isaev, K. P.
    Yulmukhametov, R. S.
    [J]. PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2021, 10 (03): : 41 - 52
  • [8] On a Sufficient Condition for the Existence of Unconditional Bases of Reproducing Kernels in Hilbert Spaces of Entire Functions
    Isaev, K. P.
    Yulmukhametov, R. S.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (06) : 1154 - 1165
  • [9] On a Sufficient Condition for the Existence of Unconditional Bases of Reproducing Kernels in Hilbert Spaces of Entire Functions
    K. P. Isaev
    R. S. Yulmukhametov
    [J]. Lobachevskii Journal of Mathematics, 2021, 42 : 1154 - 1165
  • [10] Necessary Condition for the Existence of Unconditional Bases of Reproducing Kernels for Hilbert Spaces of Entire Functions
    Isaev K.P.
    Lutsenko A.V.
    Yulmukhametov R.S.
    [J]. Journal of Mathematical Sciences, 2021, 257 (5) : 662 - 672