On a Sufficient Condition for the Existence of Unconditional Bases of Reproducing Kernels in Hilbert Spaces of Entire Functions

被引:3
|
作者
Isaev, K. P. [1 ,2 ]
Yulmukhametov, R. S. [1 ]
机构
[1] RAS, Comp Ctr, Ufa Fed Res Ctr, Inst Math, Ufa 450008, Russia
[2] Bashkir State Univ, Ufa 450076, Russia
关键词
Hilbert spaces; entire functions; unconditional bases; reproducing kernels; DENSITY THEOREMS; RIESZ BASES; INTERPOLATION;
D O I
10.1134/S1995080221060093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a reproducing kernel radial Hilbert space of entire functions and prove a sufficient condition for the existence of unconditional bases of reproducing kernels in terms of norms of monomials. Let the system of monomials {lambda(n), n is an element of Z(+)} is complete in a radial Hilbert space of entire functions H, and u(n) = ln||lambda(n)||, u'(+)(n) = u(n + 1) - u(n), n is an element of Z(+). If for some natural number p the condition inf(n)(u'(+)(n + p) - u'(+)(n)) > 0, holds, then H possesses unconditional basis of reproducing kernels.
引用
收藏
页码:1154 / 1165
页数:12
相关论文
共 50 条
  • [1] On a Sufficient Condition for the Existence of Unconditional Bases of Reproducing Kernels in Hilbert Spaces of Entire Functions
    K. P. Isaev
    R. S. Yulmukhametov
    [J]. Lobachevskii Journal of Mathematics, 2021, 42 : 1154 - 1165
  • [2] Necessary Condition for the Existence of Unconditional Bases of Reproducing Kernels for Hilbert Spaces of Entire Functions
    Isaev K.P.
    Lutsenko A.V.
    Yulmukhametov R.S.
    [J]. Journal of Mathematical Sciences, 2021, 257 (5) : 662 - 672
  • [3] UNCONDITIONAL BASES OF REPRODUCING KERNELS IN HILBERT SPACES OF ENTIRE FUNCTIONS
    Isaev, K. P.
    Yulmukhametov, R. S.
    [J]. UFA MATHEMATICAL JOURNAL, 2013, 5 (03): : 67 - 76
  • [4] On Hilbert Spaces of Entire Functions with Unconditional Bases of Reproducing Kernels
    K. P. Isaev
    R. S. Yulmukhametov
    [J]. Lobachevskii Journal of Mathematics, 2019, 40 : 1283 - 1294
  • [5] On Hilbert Spaces of Entire Functions with Unconditional Bases of Reproducing Kernels
    Isaev, K. P.
    Yulmukhametov, R. S.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (09) : 1283 - 1294
  • [6] EQUIVALENT CONDITIONS FOR THE EXISTENCE OF UNCONDITIONAL BASES OF REPRODUCING KERNELS IN SPACES OF ENTIRE FUNCTIONS
    Isaev, K. P.
    Yulmukhametov, R. S.
    [J]. PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2021, 10 (03): : 41 - 52
  • [7] On a sufficient condition for the existence of unconditional bases of reproducing kernels in Fock type spaces with nonradial weights
    K. P. Isaev
    A. V. Lutsenko
    R. S. Yulmukhametov
    [J]. Analysis and Mathematical Physics, 2023, 13
  • [8] On a sufficient condition for the existence of unconditional bases of reproducing kernels in Fock type spaces with nonradial weights
    Isaev, K. P.
    Lutsenko, A. V.
    Yulmukhametov, R. S.
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (06)
  • [9] Equivalent Norms in Hilbert Spaces with Unconditional Bases of Reproducing Kernels
    Isaev K.P.
    Trunov K.V.
    Yulmukhametov R.S.
    [J]. Journal of Mathematical Sciences, 2020, 250 (2) : 310 - 321
  • [10] GEOMETRY OF RADIAL HILBERT SPACES WITH UNCONDITIONAL BASES OF REPRODUCING KERNELS
    Isaev, K. P.
    Yulmukhametov, R. S.
    [J]. UFA MATHEMATICAL JOURNAL, 2020, 12 (04): : 55 - 63