On a criterion for the existence of unconditional bases of reproducing kernels in Fock spaces with radial regular weight

被引:1
|
作者
Isaev, K. P. [1 ,2 ]
Yulmukhametov, R. S. [1 ,2 ]
机构
[1] Russian Acad Sci Inst Math UFRC RAS, Ufa Fed Res Ctr, Inst Math, Chernyshevsky Str 112, Ufa 450008, Russia
[2] Bashkir State Univ, Zaki Validi Str 32, Ufa 450074, Russia
基金
俄罗斯科学基金会;
关键词
Hilbert spaces; Entire functions; Reproducing kernels; Unconditional bases; Riesz bases; DENSITY THEOREMS; RIESZ BASES; INTERPOLATION; BERGMAN;
D O I
10.1016/j.jmaa.2022.126839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the spaces F-phi of entire functions f such that fe(-phi) is an element of L-2(C), where phi(z) = phi(|z|) is a radial subharmonic function with some regularity property. It was proved that F-phi has Riesz basis of normalized reproducing kernels if and only if (phi(e(r)))'' is bounded above. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 38 条