On the Outer Independent Total Double Roman Domination in Graphs

被引:3
|
作者
Ahangar, H. Abdollahzadeh [1 ]
Chellali, M. [2 ]
Sheikholeslami, S. M. [3 ]
Valenzuela-Tripodoro, J. C. [4 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Shariati Ave, Babol Ir 4714871167, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, Blida, Algeria
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[4] Univ Cadiz, Dept Math, Cadiz, Spain
关键词
(Total) double Roman domination; outer independent (total) double Roman domination;
D O I
10.1007/s00009-023-02317-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A double Roman dominating function (DRDF) on a graph G = (V, E) is a function f : V ? {0, 1, 2, 3} satisfying (i) if f(v) = 0, then there must be at least two neighbors assigned 2 under f or one neighbor w with f(w) = 3; and (ii) if f(v) = 1 then v must be adjacent to a vertex w, such that f(w) = 2. A DRDF is an outer independent total double Roman dominating function (OITDRDF) on G if the set of vertices labeled 0 induces an edgeless subgraph and the subgraph induced by the vertices with a non-zero label has no isolated vertices. The weight of an OITDRDF is the sum of its function values over all vertices, and the outer independent total Roman dominating number ?(oi) (tdR)(G) is the minimum weight of an OITDRDF on G. First, we show that the problem of determining ?(oi) (tdR)(G) is NP-complete for bipartite and chordal graphs. Then, we show that it is solvable in linear time when we are restricting to bounded clique-width graphs. Moreover, we present some tight bounds on ?(oi) (tdR)(G) as well as the exact values for several graph families.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Double outer-independent domination in graphs
    Krzywkowski, Marcin
    ARS COMBINATORIA, 2017, 134 : 193 - 207
  • [22] New bounds on the outer-independent total double Roman domination number
    Sheikholeslami, S. M.
    Volkmann, L.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (04)
  • [23] HARDNESS RESULT OF OUTER-INDEPENDENT TOTAL ROMAN DOMINATION IN CHALLENGING FUZZY GRAPHS
    Kalaiselvi, S.
    Jebamani, J. Golden Ebenezer
    Namasivayam, P.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02): : 705 - 713
  • [24] Quasi total double Roman domination in graphs
    Kosari, S.
    Babaei, S.
    Amjadi, J.
    Chellali, M.
    Sheikholeslami, S. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (02) : 171 - 180
  • [25] Covering total double Roman domination in graphs
    Teymourzadeh, A.
    Mojdeh, D. A.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, : 115 - 125
  • [26] Total outer-independent domination in regular graphs
    Cabrera-Martinez, Abel
    FILOMAT, 2024, 38 (18) : 6581 - 6586
  • [27] Double outer-independent domination number of graphs
    Martinez, Abel Cabrera
    QUAESTIONES MATHEMATICAE, 2021, 44 (12) : 1835 - 1850
  • [28] Relating the Outer-Independent Total Roman Domination Number with Some Classical Parameters of Graphs
    Cabrera Martinez, Abel
    Kuziak, Dorota
    Yero, Ismael G.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (03)
  • [29] Relating the Outer-Independent Total Roman Domination Number with Some Classical Parameters of Graphs
    Abel Cabrera Martínez
    Dorota Kuziak
    Ismael G. Yero
    Mediterranean Journal of Mathematics, 2022, 19
  • [30] Relating the outer-independent total Roman domination number with some classical parameters of graphs
    Martínez, Abel Cabrera
    Kuziak, Dorota
    Yero, Ismael G.
    arXiv, 2021,