SGBoost: An Efficient and Privacy-Preserving Vertical Federated Tree Boosting Framework

被引:8
|
作者
Zhao, Jiaqi [1 ]
Zhu, Hui [1 ]
Xu, Wei [1 ]
Wang, Fengwei [1 ]
Lu, Rongxing [2 ]
Li, Hui [1 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710126, Shaanxi, Peoples R China
[2] Univ New Brunswick, Fac Comp Sci, Fredericton, NB E3B 5A3, Canada
基金
中国国家自然科学基金;
关键词
Vertical federated learning; tree boosting; privacy-preserving; efficiency; QUERY;
D O I
10.1109/TIFS.2022.3232955
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Aiming at balancing data privacy and availability, Google introduces the concept of federated learning, which can construct global machine learning models over multiple participants while keeping their raw data localized. However, the exchanged parameters in traditional federated learning may still reveal the data information. Meanwhile, the training data are usually partitioned vertically in real-world scenes, which causes difficulties in model construction. To tackle these problems, in this paper, we propose an efficient and privacy-preserving vertical federated tree boosting framework, namely SGBoost, where multiple participants can collaboratively perform model training and query without staying online all the time. Specifically, we first design secure bucket sharing and best split finding algorithms, with which the global tree model can be constructed over vertically partitioned data; meanwhile, the privacy of training data can be well guaranteed. Then, we design an oblivious query algorithm to utilize the trained model without leaking any query data or results. Moreover, SGBoost does not require multi-round interactions between participants, significantly improving the system efficiency. Detailed security analysis shows that SGBoost can well guarantee the privacy of raw data, weights, buckets, and split information. Extensive experiments demonstrate that SGBoost can achieve high accuracy comparable to centralized training and efficient performance.
引用
收藏
页码:1022 / 1036
页数:15
相关论文
共 50 条
  • [21] PPFed: A Privacy-Preserving and Personalized Federated Learning Framework
    Zhang, Guangsheng
    Liu, Bo
    Zhu, Tianqing
    Ding, Ming
    Zhou, Wanlei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19380 - 19393
  • [22] Fedlabx: a practical and privacy-preserving framework for federated learning
    Yan, Yuping
    Kamel, Mohammed B. M.
    Zoltay, Marcell
    Gal, Marcell
    Hollos, Roland
    Jin, Yaochu
    Peter, Ligeti
    Tenyi, Akos
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 677 - 690
  • [23] OpBoost: A Vertical Federated Tree Boosting Framework Based on Order-Preserving Desensitization
    Li, Xiaochen
    Hu, Yuke
    Liu, Weiran
    Feng, Hanwen
    Peng, Li
    Hong, Yuan
    Ren, Kui
    Qin, Zhan
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 16 (02): : 202 - 215
  • [24] A verifiable and privacy-preserving framework for federated recommendation system
    Gao F.
    Zhang H.
    Lin J.
    Xu H.
    Kong F.
    Yang G.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (04) : 4273 - 4287
  • [25] A privacy-preserving federated learning framework for blockchain networks
    Abuzied, Youssif
    Ghanem, Mohamed
    Dawoud, Fadi
    Gamal, Habiba
    Soliman, Eslam
    Sharara, Hossam
    Elbatt, Tamer
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (04): : 3997 - 4014
  • [26] A Verifiable and Privacy-Preserving Federated Learning Training Framework
    Duan, Haohua
    Peng, Zedong
    Xiang, Liyao
    Hu, Yuncong
    Li, Bo
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 5046 - 5058
  • [27] Towards Efficient and Privacy-preserving Federated Deep Learning
    Hao, Meng
    Li, Hongwei
    Xu, Guowen
    Liu, Sen
    Yang, Haomiao
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [28] Efficient Privacy-Preserving Federated Learning With Unreliable Users
    Li, Yiran
    Li, Hongwei
    Xu, Guowen
    Huang, Xiaoming
    Lu, Rongxing
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11590 - 11603
  • [29] A Framework for Privacy-Preserving in IoV Using Federated Learning With Differential Privacy
    Adnan, Muhammad
    Syed, Madiha Haider
    Anjum, Adeel
    Rehman, Semeen
    IEEE ACCESS, 2025, 13 : 13507 - 13521
  • [30] Efficient and privacy-preserving group signature for federated learning
    Kanchan, Sneha
    Jang, Jae Won
    Yoon, Jun Yong
    Choi, Bong Jun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 147 : 93 - 106