PPFed: A Privacy-Preserving and Personalized Federated Learning Framework

被引:1
|
作者
Zhang, Guangsheng [1 ,2 ]
Liu, Bo [1 ,2 ]
Zhu, Tianqing [3 ]
Ding, Ming [4 ]
Zhou, Wanlei [3 ]
机构
[1] Univ Technol Sydney, Ctr Cyber Secur & Privacy, Ultimo, NSW 2007, Australia
[2] Univ Technol Sydney, Sch Comp Sci, Ultimo, NSW 2007, Australia
[3] City Univ Macau, Fac Data Sci, Macau, Peoples R China
[4] CSIRO, Data61, Sydney, NSW 2015, Australia
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 11期
基金
澳大利亚研究理事会;
关键词
Federated learning; Servers; Data models; Data privacy; Training; Privacy; Internet of Things; Gradient inversion attacks; personalized federated learning; privacy preservation; MEMBERSHIP INFERENCE ATTACKS;
D O I
10.1109/JIOT.2024.3360153
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a distributed learning paradigm where a global model is trained using data samples from multiple clients but without the necessity of sharing raw data samples. However, it comes with several significant challenges in system designs, data quality, and communications. Recent research highlights a significant concern related to data privacy leakage through reserve-engineering model gradients at a malicious server. Moreover, a global model cannot provide good utility performance for individual clients when the local training data is heterogeneous in terms of quantity, quality, and distribution. Hence, personalized federated learning is highly desirable in practice to tailor the trained model for local usage. In this article, we propose privacy-preserving and personalized federated learning, a unified federated learning framework to simultaneously address privacy preservation and personalization. The intuition of our framework is to learn part of the model gradients at the server and the rest of the gradients at the local clients. To evaluate the effectiveness of the proposed framework, we conduct extensive experiments across four image classification data sets to show that our framework yields better privacy and personalization performance compared to the existing methods. We also claim that privacy preservation and personalization are essentially two facets of deep learning models, offering a unique perspective on their intrinsic interrelation.
引用
下载
收藏
页码:19380 / 19393
页数:14
相关论文
共 50 条
  • [1] Privacy-Preserving Personalized Federated Learning
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [2] A Personalized Privacy-Preserving Scheme for Federated Learning
    Li, Zhenyu
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1352 - 1356
  • [3] Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning
    Tran V.
    Pham H.
    Wong K.
    IEEE Transactions on Emerging Topics in Computing, 2024, 12 (04): : 1 - 12
  • [4] Privacy-Preserving Heterogeneous Personalized Federated Learning with Knowledge
    Pan Y.
    Su Z.
    Ni J.
    Wang Y.
    Zhou J.
    IEEE Transactions on Network Science and Engineering, 2024, 11 (06): : 1 - 14
  • [5] Privacy-preserving patient clustering for personalized federated learning
    Elhussein, Ahmed
    Gursoy, Gamze
    MACHINE LEARNING FOR HEALTHCARE CONFERENCE, VOL 219, 2023, 219
  • [6] Communication-Efficient Personalized Federated Learning With Privacy-Preserving
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2374 - 2388
  • [7] Fedlabx: a practical and privacy-preserving framework for federated learning
    Yan, Yuping
    Kamel, Mohammed B. M.
    Zoltay, Marcell
    Gal, Marcell
    Hollos, Roland
    Jin, Yaochu
    Peter, Ligeti
    Tenyi, Akos
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 677 - 690
  • [8] A Verifiable and Privacy-Preserving Federated Learning Training Framework
    Duan, Haohua
    Peng, Zedong
    Xiang, Liyao
    Hu, Yuncong
    Li, Bo
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 5046 - 5058
  • [9] A privacy-preserving federated learning framework for blockchain networks
    Abuzied, Youssif
    Ghanem, Mohamed
    Dawoud, Fadi
    Gamal, Habiba
    Soliman, Eslam
    Sharara, Hossam
    Elbatt, Tamer
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (04): : 3997 - 4014
  • [10] MolCFL: A personalized and privacy-preserving drug discovery framework based on generative clustered federated learning
    Guo, Yan
    Gao, Yongqiang
    Song, Jiawei
    JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 157