AdaMCL: Adaptive Fusion Multi-View Contrastive Learning for Collaborative Filtering

被引:5
|
作者
Zhu, Guanghui [1 ]
Lu, Wang [1 ]
Yuan, Chunfeng [1 ]
Huang, Yihua [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommender System; Collaborative Filtering; Contrastive Learning; Graph Neural Network;
D O I
10.1145/3539618.3591632
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph collaborative filtering has achieved great success in capturing users' preferences over items. Despite effectiveness, graph neural network (GNN)-based methods suffer from data sparsity in real scenarios. Recently, contrastive learning (CL) has been used to address the problem of data sparsity. However, most CL-based methods only leverage the original user-item interaction graph to construct the CL task, lacking the explicit exploitation of the higher-order information (i.e., user-user and item-item relationships). Even for the CL-based method that uses the higher-order information, the reception field of the higher-order information is fixed and regardless of the difference between nodes. In this paper, we propose a novel adaptive multi-view fusion contrastive learning framework, named AdaMCL, for graph collaborative filtering. To exploit the higher-order information more accurately, we propose an adaptive fusion strategy to fuse the embeddings learned from the user-item and user-user graphs. Moreover, we propose a multi-view fusion contrastive learning paradigm to construct effective CL tasks. Besides, to alleviate the noisy information caused by aggregating higher-order neighbors, we propose a layer-level CL task. Extensive experimental results reveal that AdaMCL is effective and outperforms existing collaborative filtering models significantly.
引用
收藏
页码:1076 / 1085
页数:10
相关论文
共 50 条
  • [31] Multi-view contrastive learning for multilayer network embedding
    Zhang, MingJie
    Wang, Dingwen
    Wu, Hongrun
    Li, Yuanxiang
    Xiang, Zhenglong
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 67
  • [32] A multi-view contrastive learning for heterogeneous network embedding
    Li, Qi
    Chen, Wenping
    Fang, Zhaoxi
    Ying, Changtian
    Wang, Chen
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [33] Contrastive Consensus Graph Learning for Multi-View Clustering
    Shiping Wang
    Xincan Lin
    Zihan Fang
    Shide Du
    Guobao Xiao
    IEEE/CAA Journal of Automatica Sinica, 2022, 9 (11) : 2027 - 2030
  • [34] MultiCBR: Multi-view Contrastive Learning for Bundle Recommendation
    Ma, Yunshan
    He, Yingzhi
    Wang, Xiang
    Wei, Yinwei
    Du, Xiaoyu
    Fu, Yuyangzi
    Chua, Tat-Seng
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (04)
  • [35] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [36] A multi-view contrastive learning for heterogeneous network embedding
    Qi Li
    Wenping Chen
    Zhaoxi Fang
    Changtian Ying
    Chen Wang
    Scientific Reports, 13
  • [37] Contrastive learning, multi-view redundancy, and linear models
    Tosh, Christopher
    Krishnamurthy, Akshay
    Hsu, Daniel
    ALGORITHMIC LEARNING THEORY, VOL 132, 2021, 132
  • [38] Selective Contrastive Learning for Unpaired Multi-View Clustering
    Xin, Like
    Yang, Wanqi
    Wang, Lei
    Yang, Ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15
  • [39] Multi-view denoising contrastive learning for bundle recommendation
    Sang, Lei
    Hu, Yang
    Zhang, Yi
    Zhang, Yiwen
    APPLIED INTELLIGENCE, 2024, 54 (23) : 12332 - 12346
  • [40] AMCFCN: attentive multi-view contrastive fusion clustering net
    Xiao, Huarun
    Hong, Zhiyong
    Xiong, Liping
    Zeng, Zhiqiang
    PEERJ COMPUTER SCIENCE, 2024, 10 : 1 - 25