AMCFCN: attentive multi-view contrastive fusion clustering net

被引:0
|
作者
Xiao, Huarun [1 ]
Hong, Zhiyong [1 ]
Xiong, Liping [1 ]
Zeng, Zhiqiang [1 ]
机构
[1] Wuyi Univ, Coll Elect & Informat Engn, Jiangmen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view Clustering; Contrastive Learning; Attention Mechanism;
D O I
10.7717/peerj-cs.1906
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advances in deep learning have propelled the evolution of multi-view clustering techniques, which strive to obtain a view-common representation from multi-view datasets. However, the contemporary multi-view clustering community confronts two prominent challenges. One is that view-specific representations lack guarantees to reduce noise introduction, and another is that the fusion process compromises view-specific representations, resulting in the inability to capture efficient information from multi-view data. This may negatively affect the accuracy of the clustering results. In this article, we introduce a novel technique named the "contrastive attentive strategy"to address the above problems. Our approach effectively extracts robust viewspecific representations from multi-view data with reduced noise while preserving view completeness. This results in the extraction of consistent representations from multi-view data while preserving the features of view-specific representations. We integrate view-specific encoders, a hybrid attentive module, a fusion module, and deep clustering into a unified framework called AMCFCN. Experimental results on four multi-view datasets demonstrate that our method, AMCFCN, outperforms seven competitive multi-view clustering methods. Our source code is available at https: //github.com/xiaohuarun/AMCFCN.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [1] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [2] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    Information Processing and Management, 2022, 59 (04):
  • [3] Contrastive Consistency and Attentive Complementarity for Deep Multi-View Subspace Clustering
    Wang, Jiao
    Wu, Bin
    Zhang, Hongying
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 143 - 160
  • [4] Attentive multi-view deep subspace clustering net q
    Lu, Run-kun
    Liu, Jian-wei
    Zuo, Xin
    NEUROCOMPUTING, 2021, 435 : 186 - 196
  • [5] Multi-view clustering with semantic fusion and contrastive learning
    Yu, Hui
    Bian, Hui-Xiang
    Chong, Zi-Ling
    Liu, Zun
    Shi, Jian-Yu
    NEUROCOMPUTING, 2024, 603
  • [6] CONAN: Contrastive Fusion Networks for Multi-view Clustering
    Ke, Guanzhou
    Hong, Zhiyong
    Zeng, Zhiqiang
    Liu, Zeyi
    Sun, Yangjie
    Xie, Yannan
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 653 - 660
  • [7] Bidirectional Attentive Multi-View Clustering
    Lu, Jitao
    Nie, Feiping
    Dong, Xia
    Wang, Rong
    Li, Xuelong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (05) : 1889 - 1901
  • [8] Multi-view Contrastive Graph Clustering
    Pan, Erlin
    Kang, Zhao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [9] Self-Weighted Contrastive Fusion for Deep Multi-View Clustering
    Wu, Song
    Zheng, Yan
    Ren, Yazhou
    He, Jing
    Pu, Xiaorong
    Huang, Shudong
    Hao, Zhifeng
    He, Lifang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9150 - 9162
  • [10] A Clustering-Guided Contrastive Fusion for Multi-View Representation Learning
    Ke, Guanzhou
    Chao, Guoqing
    Wang, Xiaoli
    Xu, Chenyang
    Zhu, Yongqi
    Yu, Yang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2056 - 2069