On a fractional (p,q)-Laplacian equation with critical nonlinearities

被引:0
|
作者
Shen, Yansheng [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang, Peoples R China
关键词
Fractional; (p; q)-Laplacian; critical nonlinearities; variational techniques; Q-LAPLACIAN PROBLEM; POSITIVE SOLUTIONS; MULTIPLICITY; (P; SYSTEMS; CONCAVE; EXISTENCE;
D O I
10.1080/17476933.2024.2332312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following fractional (p, q)-Laplacian equations with critical Hardy-Sobolev exponents {(-Delta)(p)(s)(1)u + (-Delta)(q)(s)(2)u = lambda|u|(r-2) + mu |u|(p)(s1)*(alpha)-2 u/|x|(alpha) in Omega, u = 0 in R-N\Omega, 0 < s(2) < s(1) < 1 < q < r <= p <N/s(1), lambda, mu > 0 are two parameters, 0 <= alpha < ps(1) and p(s1)* (alpha) = p(N-alpha)/N-ps(1) is the fractional Hardy-Sobolev critical exponent, Omega subset of R-N is an open bounded domain with smooth boundary. By using variational methods, we show that the problem has a nontrivial nonnegative weak solution.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] On a Fractional p-Laplacian Equation with Critical Fractional Sobolev Exponent
    Saifia, Ouarda
    Velin, Jean
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [12] Existence of solutions for fractional p&q-Laplacian system involving critical sandwich-type nonlinearities
    Ding, Chengjun
    Yang, Yang
    APPLICABLE ANALYSIS, 2023, 102 (02) : 485 - 493
  • [13] Existence of Solutions for Fractional (p, q)-Laplacian Problems Involving Critical Hardy-Sob olev Nonlinearities
    Cui, Xuehui
    Yang, Yang
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (05): : 947 - 967
  • [14] Multiplicity of solutions for fractional p&q-Laplacian system involving critical concave-convex nonlinearities
    Chen, Wenjing
    Gui, Yuyan
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 81 - 88
  • [15] MULTIPLE SOLUTIONS OF A p(x)-LAPLACIAN EQUATION INVOLVING CRITICAL NONLINEARITIES
    Liang, Yuan
    Wu, Xianbin
    Zhang, Qihu
    Zhao, Chunshan
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 2055 - 2082
  • [16] Existence and multiplicity of solutions for fractional p-Laplacian equation involving critical concave-convex nonlinearities
    Ye, Dong
    Zhang, Weimin
    ADVANCED NONLINEAR STUDIES, 2024, 24 (04) : 895 - 921
  • [17] DEGENERATE KIRCHHOFF (p,q)-FRACTIONAL SYSTEMS WITH CRITICAL NONLINEARITIES
    Fiscella, Alessio
    Pucci, Patrizia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (03) : 723 - 752
  • [18] Degenerate Kirchhoff (p, q)–Fractional Systems with Critical Nonlinearities
    Alessio Fiscella
    Patrizia Pucci
    Fractional Calculus and Applied Analysis, 2020, 23 : 723 - 752
  • [19] On a Fractional p&q Laplacian Problem with Critical Growth
    Ambrosio, Vincenzo
    Isernia, Teresa
    Siciliano, Gaetano
    MINIMAX THEORY AND ITS APPLICATIONS, 2019, 4 (01): : 1 - 19
  • [20] A Fractional p-Laplacian Problem with Multiple Critical Hardy–Sobolev Nonlinearities
    Ronaldo B. Assunção
    Jeferson C. Silva
    Olímpio H. Miyagaki
    Milan Journal of Mathematics, 2020, 88 : 65 - 97