Existence of Solutions for Fractional (p, q)-Laplacian Problems Involving Critical Hardy-Sob olev Nonlinearities

被引:0
|
作者
Cui, Xuehui [1 ]
Yang, Yang [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2024年 / 28卷 / 05期
关键词
fractional; (p; q; )-Laplacian; subcritical and critical Hardy exponents; critical non- linearity; variational methods; LAPLACIAN PROBLEMS; CRITICAL SOBOLEV; P-LAPLACIAN; MULTIPLICITY; EQUATIONS; (P;
D O I
10.11650/tjm/240402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to studying a class of fractional (p,q)-Laplacianproblems with subcritical and critical Hardy potentials: {(-triangle)(p)(s1)u+nu(-triangle)(q)(s2)u=lambda|u|(r-2)u/|x|(a)+|u|p(& lowast;s1)((b)-2)u in Omega x in R-N\ohm, where ohm subset of R(N )is a smooth and bounded domain, and p(s1)(b) =(N-b)/p/N-ps(1 )denotes the fractional critical Hardy-Sobolev exponent. More precisely, when nu= 1 and nu >0 is sufficiently small, using some asymptotic estimates and the Mountain Pass Theorem, we establish the existence results for the above fractional elliptic equation under some suitable hypotheses, respectively, which are gained over a wider range of parameters.
引用
收藏
页码:947 / 967
页数:21
相关论文
共 50 条