Siamese Tracking Network with Spatial-Semantic-Aware Attention and Flexible Spatiotemporal Constraint

被引:0
|
作者
Zhang, Huanlong [1 ]
Wang, Panyun [1 ]
Zhang, Jie [1 ]
Wang, Fengxian [1 ]
Song, Xiaohui [2 ]
Zhou, Hebin [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Zhengzhou 450003, Peoples R China
[2] Henan Acad Sci, Zhengzhou 450008, Peoples R China
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 01期
基金
中国国家自然科学基金;
关键词
object tracking; aware attention model; spatiotemporal constraint; template updating; VISUAL TRACKING; ROBUST; WINDOW;
D O I
10.3390/sym16010061
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Siamese trackers based on classification and regression have drawn extensive attention due to their appropriate balance between accuracy and efficiency. However, most of them are prone to failure in the face of abrupt motion or appearance changes. This paper proposes a Siamese-based tracker that incorporates spatial-semantic-aware attention and flexible spatiotemporal constraint. First, we develop a spatial-semantic-aware attention model, which identifies the importance of each feature region and channel to target representation through the single convolution attention network with a loss function and increases the corresponding weights in the spatial and channel dimensions to reinforce the target region and semantic information on the target feature map. Secondly, considering that the traditional method unreasonably weights the target response in abrupt motion, we design a flexible spatiotemporal constraint. This constraint adaptively adjusts the constraint weights on the response map by evaluating the tracking result. Finally, we propose a new template updating the strategy. This strategy adaptively adjusts the contribution weights of the tracking result to the new template using depth correlation assessment criteria, thereby enhancing the reliability of the template. The Siamese network used in this paper is a symmetric neural network with dual input branches sharing weights. The experimental results on five challenging datasets show that our method outperformed other advanced algorithms.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] SiamBAN: Target-Aware Tracking With Siamese Box Adaptive Network
    Chen, Zedu
    Zhong, Bineng
    Li, Guorong
    Zhang, Shengping
    Ji, Rongrong
    Tang, Zhenjun
    Li, Xianxian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 5158 - 5173
  • [32] Siamese global location-aware network for visual object tracking
    Li, Jiafeng
    Li, Bin
    Ding, Guodong
    Zhuo, Li
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3607 - 3620
  • [33] Siamese global location-aware network for visual object tracking
    Jiafeng Li
    Bin Li
    Guodong Ding
    Li Zhuo
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3607 - 3620
  • [34] Two-stage aware attentional Siamese network for visual tracking
    Sun, Xinglong
    Han, Guangliang
    Guo, Lihong
    Yang, Hang
    Wu, Xiaotian
    Li, Qingqing
    PATTERN RECOGNITION, 2022, 124
  • [35] Siamese Neural Network Object Tracking with Distractor-Aware Model
    Li Yong
    Yang Dedong
    Han Yajun
    Song Peng
    ACTA OPTICA SINICA, 2020, 40 (04)
  • [36] DomainSiam: Domain-Aware Siamese Network for Visual Object Tracking
    Abdelpakey, Mohamed H.
    Shehata, Mohamed S.
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 45 - 58
  • [37] Global-Aware Siamese Network for Thermal Infrared Object Tracking
    Li Chang
    Yang Dedong
    Song Peng
    Guo Chang
    ACTA OPTICA SINICA, 2021, 41 (06)
  • [38] An Improved Siamese Tracking Network Based On Self-Attention And Cross-Attention
    Lai Yijun
    Song Jianmei
    She Haoping
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 466 - 470
  • [39] SCSiam: spatial and channel attentional Siamese network for visual tracking
    Wang, Rong
    Pu, Lei
    SOFT COMPUTING, 2023,
  • [40] Siamese Network for Visual Tracking with Temporal-spatial Property
    Jiang, Shan
    Di, Xiaoqiang
    Han, Cheng
    Binggong Xuebao/Acta Armamentarii, 2021, 42 (09): : 1940 - 1950