Siamese Tracking Network with Spatial-Semantic-Aware Attention and Flexible Spatiotemporal Constraint

被引:0
|
作者
Zhang, Huanlong [1 ]
Wang, Panyun [1 ]
Zhang, Jie [1 ]
Wang, Fengxian [1 ]
Song, Xiaohui [2 ]
Zhou, Hebin [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Zhengzhou 450003, Peoples R China
[2] Henan Acad Sci, Zhengzhou 450008, Peoples R China
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 01期
基金
中国国家自然科学基金;
关键词
object tracking; aware attention model; spatiotemporal constraint; template updating; VISUAL TRACKING; ROBUST; WINDOW;
D O I
10.3390/sym16010061
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Siamese trackers based on classification and regression have drawn extensive attention due to their appropriate balance between accuracy and efficiency. However, most of them are prone to failure in the face of abrupt motion or appearance changes. This paper proposes a Siamese-based tracker that incorporates spatial-semantic-aware attention and flexible spatiotemporal constraint. First, we develop a spatial-semantic-aware attention model, which identifies the importance of each feature region and channel to target representation through the single convolution attention network with a loss function and increases the corresponding weights in the spatial and channel dimensions to reinforce the target region and semantic information on the target feature map. Secondly, considering that the traditional method unreasonably weights the target response in abrupt motion, we design a flexible spatiotemporal constraint. This constraint adaptively adjusts the constraint weights on the response map by evaluating the tracking result. Finally, we propose a new template updating the strategy. This strategy adaptively adjusts the contribution weights of the tracking result to the new template using depth correlation assessment criteria, thereby enhancing the reliability of the template. The Siamese network used in this paper is a symmetric neural network with dual input branches sharing weights. The experimental results on five challenging datasets show that our method outperformed other advanced algorithms.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Contour-aware semantic segmentation network with spatial attention mechanism for medical image
    Cheng, Zhiming
    Qu, Aiping
    He, Xiaofeng
    VISUAL COMPUTER, 2022, 38 (03): : 749 - 762
  • [22] Contour-aware semantic segmentation network with spatial attention mechanism for medical image
    Zhiming Cheng
    Aiping Qu
    Xiaofeng He
    The Visual Computer, 2022, 38 : 749 - 762
  • [23] MASNet: mixed attention Siamese network for visual object tracking
    Zhang, Jianwei
    Zhang, Zhichen
    Zhang, Huanlong
    Wang, Jingchao
    Wang, He
    Zheng, Menya
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [24] Siamese-Based Twin Attention Network for Visual Tracking
    Bao, Hua
    Shu, Ping
    Zhang, Hongchao
    Liu, Xiaobai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 847 - 860
  • [25] Siamese block attention network for online update object tracking
    Dingkun Xiao
    Ke Tan
    Zhenzhong Wei
    Guangjun Zhang
    Applied Intelligence, 2023, 53 : 3459 - 3471
  • [26] Siamese block attention network for online update object tracking
    Xiao, Dingkun
    Tan, Ke
    Wei, Zhenzhong
    Zhang, Guangjun
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3459 - 3471
  • [27] Dual attention Siamese network with anchor free for visual tracking
    Guo W.
    Liang B.-W.
    Ding X.-M.
    Kongzhi yu Juece/Control and Decision, 2024, 39 (02): : 633 - 640
  • [28] Hierarchical Attention Siamese Network for Thermal Infrared Target Tracking
    Yuan, Di
    Liao, Donghai
    Huang, Feng
    Qiu, Zhaobing
    Shu, Xiu
    Tian, Chunwei
    Liu, Qiao
    IEEE Transactions on Instrumentation and Measurement, 2024, 73
  • [29] SiamAGN: Siamese attention-guided network for visual tracking
    Wei, Bingbing
    Chen, Hongyu
    Ding, Qinghai
    Luo, Haibo
    NEUROCOMPUTING, 2022, 512 : 69 - 82
  • [30] Object tracking algorithm based on siamese network with combined attention
    Yang M.
    Jia X.
    Yin H.
    Sun F.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (01): : 127 - 136