CriticalFL: A Critical Learning Periods Augmented Client Selection Framework for Efficient Federated Learning

被引:7
|
作者
Yan, Gang [1 ]
Wang, Hao [2 ]
Yuan, Xu [3 ]
Li, Jian [1 ]
机构
[1] SUNY Binghamton, Binghamton, NY 13902 USA
[2] Louisiana State Univ, Baton Rouge, LA USA
[3] Univ Louisiana Lafayette, Lafayette, LA USA
基金
美国国家科学基金会;
关键词
Federated Learning; Critical Learning Periods; Client Selection;
D O I
10.1145/3580305.3599293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is a distributed optimization paradigm that learns from data samples distributed across a number of clients. Adaptive client selection that is cognizant of the training progress of clients has become a major trend to improve FL efficiency but not yet well-understood. Most existing FL methods such as FedAvg and its state-of-the-art variants implicitly assume that all learning phases during the FL training process are equally important. Unfortunately, this assumption has been revealed to be invalid due to recent findings on critical learning periods (CLP), in which small gradient errors may lead to an irrecoverable deficiency on final test accuracy. In this paper, we develop CriticalFL, a CLP augmented FL framework to reveal that adaptively augmenting exiting FL methods with CLP, the resultant performance is significantly improved when the client selection is guided by the discovered CLP. Experiments based on various machine learning models and datasets validate that the proposed CriticalFL framework consistently achieves an improved model accuracy while maintains better communication efficiency as compared to state-of-the-art methods, demonstrating a promising and easily adopted method for tackling the heterogeneity of FL training.
引用
收藏
页码:2898 / 2907
页数:10
相关论文
共 50 条
  • [41] Incentive Mechanism for Federated Learning With Random Client Selection
    Wu, Hongyi
    Tang, Xiaoying
    Zhang, Ying-Jun Angela
    Gao, Lin
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1922 - 1933
  • [42] Stochastic Client Selection for Federated Learning With Volatile Clients
    Huang, Tiansheng
    Lin, Weiwei
    Shen, Li
    Li, Keqin
    Zomaya, Albert Y.
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20) : 20055 - 20070
  • [43] Contribution-based Federated Learning client selection
    Lin, Weiwei
    Xu, Yinhai
    Liu, Bo
    Li, Dongdong
    Huang, Tiansheng
    Shi, Fang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (10) : 7235 - 7260
  • [44] A Systematic Literature Review on Client Selection in Federated Learning
    Smestad, Carl
    Li, Jingyue
    27TH INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2023, 2023, : 2 - 11
  • [45] Client Selection for Asynchronous Federated Learning with Fairness Consideration
    Zhu, Hongbin
    Yang, Miao
    Kuang, Junqian
    Qian, Hua
    Zhou, Yong
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 800 - 805
  • [46] Towards Understanding Biased Client Selection in Federated Learning
    Cho, Yae Jee
    Wang, Jianyu
    Joshi, Gauri
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [47] FAIRNESS-AWARE CLIENT SELECTION FOR FEDERATED LEARNING
    Shi, Yuxin
    Liu, Zelei
    Shi, Zhuan
    Yu, Han
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 324 - 329
  • [48] A Robust Client Selection Mechanism for Federated Learning Environments
    Veiga, Rafael
    Sousa, John
    Morais, Renan
    Bastos, Lucas
    Lobato, Wellington
    Rosário, Denis
    Cerqueira, Eduardo
    Journal of the Brazilian Computer Society, 30 (01): : 444 - 455
  • [49] VFedCS: Optimizing Client Selection for Volatile Federated Learning
    Shi, Fang
    Hu, Chunchao
    Lin, Weiwei
    Fan, Lisheng
    Huang, Tiansheng
    Wu, Wentai
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (24) : 24995 - 25010
  • [50] A Review of Client Selection Mechanisms in Heterogeneous Federated Learning
    Wang, Xiao
    Ge, Lina
    Zhang, Guifeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT II, 2023, 14087 : 761 - 772