Multi-objective building energy system optimization considering EV infrastructure

被引:29
|
作者
Park, Musik [1 ]
Wang, Zhiyuan [1 ]
Li, Lanyu [2 ,3 ]
Wang, Xiaonan [2 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
[2] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
关键词
Renewable energy; Energy system optimization; Zero Energy Building; Electric vehicle; EnergyPlus; PASSIVE DESIGN STRATEGIES; COST; METHODOLOGY; PERFORMANCE; GENERATION; EMISSIONS; STORAGE; DEMAND; IMPACT;
D O I
10.1016/j.apenergy.2022.120504
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With increasing concerns over carbon dioxide emissions, the concept of Zero Energy Building (ZEB) has emerged. Electric Vehicles (EVs) are also considered environmentally friendly since they reduce greenhouse gas emissions, with a rapidly growing market. With these global trends of increasing EV amount and infrastructure, building energy systems should incorporate the ZEB concept and the increasing electricity requirements for EV charging. However, it is unclear how EV charging demand can affect building energy system design while aligning with ZEB requirements. Therefore, this paper develops a new framework to find the optimal energy system design that meets EV charging demand and ZEB requirements. The charging demand for EVs is predicted by the machine learning model, which combines the building energy demand from EnergyPlus. Ultimately, the Genetic Algo-rithm and PROBID method are applied to optimize the Total Annual Cost (TAC) and Self-Energy Sufficiency Ratio. EV charging demand has been found to affect energy system design, especially in small-size buildings. Using the proposed method, the building owner can determine the optimal capacity of an energy system based on economic and ZEB conditions, contributing to the future net ZEB and transportation systems.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Multi-objective optimization strategy of adaptive cruise control considering regenerative energy
    Wu, Di
    Zhu, Bo
    Tan, Dongkui
    Zhang, Nong
    Gu, Jiaxin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2019, 233 (14) : 3630 - 3645
  • [42] Multi-objective design optimization considering the energy absorption and peak crushing load
    Yamazaki, Koetsu
    Kitayama, Satoshi
    Ushida, Takahiro
    Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75 (752): : 522 - 528
  • [43] Multi-objective optimization of micro-energy network considering exergy efficiency
    Cheng, Jiawei
    Mu, Longhua
    Liang, Ziwen
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2022, 14 (03)
  • [44] Multi-objective optimization design of regional integrated energy system
    Li, Xueliang
    Wu, Kuihua
    Qi, Lujie
    Cui, Can
    Liu, Dunnan
    Li, Chen
    2020 6TH INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2020, 508
  • [45] Multi-objective Optimization of Automotive Electrical/Energy Storage System
    Fontaine, Gauthier
    Hammami, Omar
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2016, : 339 - 343
  • [46] Multi-Objective Configuration Optimization of a Hybrid Energy Storage System
    Cheng, Shan
    Sun, Wei-Bin
    Liu, Wen-Li
    APPLIED SCIENCES-BASEL, 2017, 7 (02):
  • [47] Multi-objective Optimization of Integrated Renewable Energy System Considering Economics and CO2 Emissions
    Wu, Qiong
    Zhou, Jian
    Liu, Shu
    Yang, Xiu
    Ren, Hongbo
    CLEAN ENERGY FOR CLEAN CITY: CUE 2016 - APPLIED ENERGY SYMPOSIUM AND FORUM: LOW-CARBON CITIES AND URBAN ENERGY SYSTEMS, 2016, 104 : 15 - 20
  • [48] Multi-objective capacity configuration optimization of an integrated energy system considering economy and environment with harvest heat
    Shen, Haotian
    Zhang, Hualiang
    Xu, Yujie
    Chen, Haisheng
    Zhu, Yilin
    Zhang, Zhilai
    Li, Wenkai
    ENERGY CONVERSION AND MANAGEMENT, 2022, 269
  • [49] Multi-objective capacity configuration optimization of an integrated energy system considering economy and environment with harvest heat
    Shen, Haotian
    Zhang, Hualiang
    Xu, Yujie
    Chen, Haisheng
    Zhu, Yilin
    Zhang, Zhilai
    Li, Wenkai
    Energy Conversion and Management, 2022, 269
  • [50] Multi-Objective Optimization of Integrated Process Planning and Scheduling Considering Energy Savings
    Zhang, Xu
    Zhang, Hua
    Yao, Jin
    ENERGIES, 2020, 13 (23)