ON THE CONVERGENCE OF THE CRANK-NICOLSON METHOD FOR THE LOGARITHMIC SCHRODINGER EQUATION

被引:3
|
作者
Paraschis, Panagiotis [1 ]
Zouraris, Georgios E. [2 ]
机构
[1] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, GR-15780 Zografos, Greece
[2] Univ Crete, Dept Math & Appl Math, Div Appl Math Differential Equat & Numer Anal, Voutes Campus, GR-70013 Iraklion, Crete, Greece
来源
关键词
Logarithmic Schrodinger equation; Dirichlet boundary conditions; finite differences; Crank-Nicolson time stepping; error estimates;
D O I
10.3934/dcdsb.2022074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an initial and Dirichlet boundary value problem for a logarithmic Schrodinger equation over a two dimensional rectangular domain. We construct approximations of the solution to the problem using a standard second order finite difference method for space discretization and the Crank-Nicolson method for time discretization, with or without regularizing the logarithmic term. We develop a convergence analysis yielding a new almost second order a priori error estimates in the discrete L-t(infinity) (L-x(2)) norm, and we show results from numerical experiments exposing the efficiency of the method proposed. It is the first time in the literature where an error estimate for a numerical method applied to the logarithmic Schrodinger equation is provided, without regularizing its nonlinear term.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 50 条
  • [41] A CLASS OF ALTERNATING BLOCK CRANK-NICOLSON METHOD
    CHEN, J
    ZHANG, BL
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 45 (1-2) : 89 - 112
  • [42] CRANK-NICOLSON DIFFERENCE SCHEME FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION WITH THE RIESZ SPACE FRACTIONAL DERIVATIVE
    Guo, Changhong
    Fang, Shaomei
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1074 - 1094
  • [43] A posteriori error control and adaptivity for Crank-Nicolson finite element approximations for the linear Schrodinger equation
    Katsaounis, Theodoros
    Kyza, Irene
    [J]. NUMERISCHE MATHEMATIK, 2015, 129 (01) : 55 - 90
  • [44] Iterated Crank-Nicolson Method for Peridynamic Models
    Liu, Jinjie
    Appiah-Adjei, Samuel
    Brio, Moysey
    [J]. DYNAMICS, 2024, 4 (01): : 192 - 207
  • [45] CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
    冯新龙
    何银年
    [J]. Acta Mathematica Scientia, 2016, 36 (01) : 124 - 138
  • [46] CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
    Feng, Xinlong
    He, Yinnian
    [J]. ACTA MATHEMATICA SCIENTIA, 2016, 36 (01) : 124 - 138
  • [47] A Newton Linearized Crank-Nicolson Method for the Nonlinear Space Fractional Sobolev Equation
    Qin, Yifan
    Yang, Xiaocheng
    Ren, Yunzhu
    Xu, Yinghong
    Niazi, Wahidullah
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [48] MODIFIED LOCAL CRANK-NICOLSON METHOD FOR GENERALIZED BURGERS-HUXLEY EQUATION
    Huang, Pengzhan
    Abduwali, Abdurishit
    [J]. MATHEMATICAL REPORTS, 2016, 18 (01):
  • [49] The impact of a natural time change on the convergence of the Crank-Nicolson scheme
    Reisinger, Christoph
    Whitley, Alan
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (03) : 1156 - 1192
  • [50] Convergence of the Crank-Nicolson Method for a Singularly Perturbed Parabolic Reaction-Diffusion System
    Victor, Franklin
    Miller, John J. H.
    Sigamani, Valarmathi
    [J]. DIFFERENTIAL EQUATIONS AND NUMERICAL ANALYSIS, 2016, 172 : 77 - 97