Temperature electrolyte influences on the phase composition of anodic CuOx nanostructures

被引:6
|
作者
Butmanov, Danil [1 ]
Savchuk, Timofey [1 ]
Gavrilin, Ilya [1 ]
Dronova, Daria [1 ]
Savitskiy, Andrey [1 ,2 ]
Tsiniaikin, Ilia [3 ,4 ]
Dronov, Alexey [1 ]
Gavrilov, Sergey [1 ]
机构
[1] Natl Res Univ Elect Technol, MIET, Bld 1, Shokin Sq, Zelenograd 124498, Moscow, Russia
[2] Sci Mfg Complex Technol Ctr, Moscow, Russia
[3] Msu Quantum Technol Ctr, Moscow 119991, Russia
[4] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
关键词
CuO; Cu2O; Nanostructures; Anodising; Photocurrent; NANOWIRES; COPPER;
D O I
10.1016/j.physe.2022.115533
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, the effect of the electrolyte solution temperature on the morphology, phase composition, and photoelectrochemical properties of CuOx nanostructures were investigated. It has been shown that rising tem-peratures do not form the well-studied Cu(OH)2 nanorods, but CuO nanosheets 5-7 nm thick, layered on top of each other. The obtained copper oxide nanostructures possess the CuO crystal structure immediately after anodising. As the temperature of the electrolyte increases, the degree of light reflection decreases in the wavelength range from 190 to 1100 nm, with a maximum of 1.25%.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Anode potential influences the structure and function of anodic electrode and electrolyte-associated microbiomes
    Dennis, Paul G.
    Virdis, Bernardino
    Vanwonterghem, Inka
    Hassan, Alif
    Hugenholtz, Phil
    Tyson, Gene W.
    Rabaey, Korneel
    SCIENTIFIC REPORTS, 2016, 6
  • [22] Effect of the electrolyte temperature on the formation and structure of porous anodic titania film
    Lazarouk, S. K.
    Sasinovich, D. A.
    Kupreeva, O. V.
    Orehovskaia, T. I.
    Rochdi, N.
    d'Avitaya, F. Arnaud
    Borisenko, V. E.
    THIN SOLID FILMS, 2012, 526 : 41 - 46
  • [23] Influence of mass transfer and electrolyte composition on anodic oxygen evolution in molten oxides
    Caldwell, A. H.
    Lai, E.
    Gmitter, A. J.
    Allanore, A.
    ELECTROCHIMICA ACTA, 2016, 219 : 178 - 186
  • [24] EFFECT OF ELECTROLYTE TEMPERATURE ON THE THICKNESS OF ANODIC ALUMINIUM OXIDE (AAO) LAYER
    Michal, P.
    Vagaska, A.
    Fechova, E.
    Gombar, M.
    Kozak, D.
    METALURGIJA, 2016, 55 (03): : 403 - 406
  • [25] Investigation of Influence of Electrolyte Composition on Formation of Anodic Titanium Oxide Nanotube Films
    Kojima, Ryota
    Kimura, Yasuo
    Bitoh, Mitsuo
    Abe, Munemitsu
    Niwano, Michio
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) : D629 - D636
  • [26] Phase Composition and Structural Properties of Temperature- and Humidity-Sensitive Thick-Film Nanostructures
    Klym, Halyna
    Hadzaman, Ivan
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2018, : 160 - 163
  • [27] Formation of anodic ZrO2 nanostructures in NH4F/ethylene glycol electrolyte
    Rozana, M.
    Lockman, Z.
    PROCEEDING OF THE 4TH INTERNATIONAL SYMPOSIUM ON GREEN TECHNOLOGY FOR VALUE CHAINS 2019, 2020, 483
  • [28] Influence of electrolyte composition on the microstructure and photocatalytic activity of TiO2 nanostructures
    Yilmaz, Ozan
    Ebeoglugil, Faruk
    Demirci, Selim
    Dikici, Tuncay
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2022, 58 (01) : 123 - 133
  • [29] Influence of electrolyte composition on the microstructure and photocatalytic activity of TiO2 nanostructures
    Ozan Yılmaz
    Faruk Ebeoglugil
    Selim Demirci
    Tuncay Dikici
    Journal of the Australian Ceramic Society, 2022, 58 : 123 - 133
  • [30] Reduction of Carbon Dioxide to Carbon Nanostructures in Molten Salt: The Effect of Electrolyte Composition
    Soodeh Abbasloo
    Mehdi Ojaghi-Ilkhchi
    Mahdi Mozammel
    JOM, 2019, 71 : 2103 - 2111