High-throughput deep learning variant effect prediction with Sequence UNET

被引:13
|
作者
Dunham, Alistair S. [1 ,2 ]
Beltrao, Pedro [1 ,3 ]
AlQuraishi, Mohammed [4 ]
机构
[1] European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Wellcome Genome Campus, Hinxton CB10 1SD, Cambs, England
[2] Wellcome Sanger Inst, Wellcome Genome Campus, Hinxton CB10 1RQ, Cambs, England
[3] Swiss Fed Inst Technol, Inst Mol Syst Biol, Dept Biol, CH-8093 Zurich, Switzerland
[4] Columbia Univ, Dept Syst Biol, New York, NY 10027 USA
基金
英国惠康基金;
关键词
Variant effect prediction; Deep learning; Mutation; PSSM; Pathogenicity; Machine learning; SERVER;
D O I
10.1186/s13059-023-02948-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Understanding coding mutations is important for many applications in biology and medicine but the vast mutation space makes comprehensive experimental characterisation impossible. Current predictors are often computationally intensive and difficult to scale, including recent deep learning models. We introduce Sequence UNET, a highly scalable deep learning architecture that classifies and predicts variant frequency from sequence alone using multi-scale representations from a fully convolutional compression/expansion architecture. It achieves comparable pathogenicity prediction to recent methods. We demonstrate scalability by analysing 8.3B variants in 904,134 proteins detected through large-scale proteomics. Sequence UNET runs on modest hardware with a simple Python package.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] High-throughput cell spheroid production and assembly analysis by microfluidics and deep learning
    Trossbach, Martin
    Akerlund, Emma
    Langer, Krzysztof
    Seashore-Ludlow, Brinton
    Joensson, Haakan N.
    SLAS TECHNOLOGY, 2023, 28 (06): : 423 - 432
  • [42] Combining High-Throughput Experiments and Active Learning to Characterize Deep Eutectic Solvents
    Abranches, Dinis O.
    Dean, William
    Munoz, Miguel
    Wang, Wei
    Liang, Yangang
    Gurkan, Burcu
    Maginn, Edward J.
    Colon, Yamil J.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (38): : 14218 - 14229
  • [43] Modeling, virtual high-throughput screening, and machine learning of deep eutectic solvents
    Hachmann, Johannes
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [44] A fully automated deep learning pipeline for high-throughput colony segmentation and classification
    Carl, Sarah H.
    Duempelmann, Lea
    Shimada, Yukiko
    Buhler, Marc
    BIOLOGY OPEN, 2020, 9 (06):
  • [45] High-Throughput Classification and Counting of Vegetable Soybean Pods Based on Deep Learning
    Zhang, Chenxi
    Lu, Xu
    Ma, Huimin
    Hu, Yuhao
    Zhang, Shuainan
    Ning, Xiaomei
    Hu, Jianwei
    Jiao, Jun
    AGRONOMY-BASEL, 2023, 13 (04):
  • [46] Uncovering the key dimensions of high-throughput biomolecular data using deep learning
    Zhang, Shixiong
    Li, Xiangtao
    Lin, Qiuzhen
    Lin, Jiecong
    Wong, Ka-Chun
    NUCLEIC ACIDS RESEARCH, 2020, 48 (10)
  • [47] Multimodal high-throughput approach assisted by deep learning for the analysis of ceramic saggars
    Zhang, Lina
    Yuan, Jingbin
    Huang, Lian'ming
    Wu, Wei
    Wang, Qi
    Li, Weifu
    Min, Xin
    Han, Hua
    Fang, Minghao
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (02)
  • [48] A High-Throughput Processor for GDN-Based Deep Learning Image Compression
    Shao, Hu
    Liu, Bingtao
    Li, Zongpeng
    Yan, Chenggang
    Sun, Yaoqi
    Wang, Tingyu
    ELECTRONICS, 2023, 12 (10)
  • [49] High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning
    Duffy, Grant
    Cheng, Paul P.
    Yuan, Neal
    He, Bryan
    Kwan, Alan C.
    Shun-Shin, Matthew J.
    Alexander, Kevin M.
    Ebinger, Joseph
    Lungren, Matthew P.
    Rader, Florian
    Liang, David H.
    Schnittger, Ingela
    Ashley, Euan A.
    Zou, James Y.
    Patel, Jignesh
    Witteles, Ronald
    Cheng, Susan
    Ouyang, David
    JAMA CARDIOLOGY, 2022, 7 (04) : 386 - 395
  • [50] Deep learning for cell-specific high-throughput quantification of oligodendrocyte ensheathment
    Xu, Y. K.
    Chitsaz, D.
    Cui, Q. L.
    Brown, R. A.
    Dabarno, M. A.
    Antel, J. P.
    Kennedy, T. E.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 946 - 946