High-throughput deep learning variant effect prediction with Sequence UNET

被引:13
|
作者
Dunham, Alistair S. [1 ,2 ]
Beltrao, Pedro [1 ,3 ]
AlQuraishi, Mohammed [4 ]
机构
[1] European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Wellcome Genome Campus, Hinxton CB10 1SD, Cambs, England
[2] Wellcome Sanger Inst, Wellcome Genome Campus, Hinxton CB10 1RQ, Cambs, England
[3] Swiss Fed Inst Technol, Inst Mol Syst Biol, Dept Biol, CH-8093 Zurich, Switzerland
[4] Columbia Univ, Dept Syst Biol, New York, NY 10027 USA
基金
英国惠康基金;
关键词
Variant effect prediction; Deep learning; Mutation; PSSM; Pathogenicity; Machine learning; SERVER;
D O I
10.1186/s13059-023-02948-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Understanding coding mutations is important for many applications in biology and medicine but the vast mutation space makes comprehensive experimental characterisation impossible. Current predictors are often computationally intensive and difficult to scale, including recent deep learning models. We introduce Sequence UNET, a highly scalable deep learning architecture that classifies and predicts variant frequency from sequence alone using multi-scale representations from a fully convolutional compression/expansion architecture. It achieves comparable pathogenicity prediction to recent methods. We demonstrate scalability by analysing 8.3B variants in 904,134 proteins detected through large-scale proteomics. Sequence UNET runs on modest hardware with a simple Python package.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping
    Dobos, Orsolya
    Horvath, Peter
    Nagy, Ferenc
    Danka, Tivadar
    Viczian, Andras
    PLANT PHYSIOLOGY, 2019, 181 (04) : 1415 - 1424
  • [22] HIDL: High-Throughput Deep Learning Inference at the Hybrid Mobile Edge
    Wu, Jing
    Wang, Lin
    Pei, Qiangyu
    Cui, Xingqi
    Liu, Fangming
    Yang, Tingting
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 4499 - 4514
  • [23] Deep learning accelerated high-throughput screening of organic solar cells
    Zhang, Wenlin
    Zou, Yurong
    Wang, Xin
    Chen, Junxian
    Xu, Dingguo
    JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (10) : 5295 - 5306
  • [24] High-throughput ovarian follicle counting by an innovative deep learning approach
    Sonigo, Charlotte
    Jankowski, Stephane
    Yoo, Olivier
    Trassard, Olivier
    Bousquet, Nicolas
    Grynberg, Michael
    Beau, Isabelle
    Binart, Nadine
    SCIENTIFIC REPORTS, 2018, 8
  • [25] Deep learning approaches for detecting high-throughput screening false positives
    Matlock, Matthew
    Hughes, Tyler
    Swamidass, S. Joshua
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [26] A deep learning model for detection and tracking in high-throughput images of organoid
    Bian, Xuesheng
    Li, Gang
    Wang, Cheng
    Liu, Weiquan
    Lin, Xiuhong
    Chen, Zexin
    Cheung, Mancheung
    Luo, Xiongbiao
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [27] Enhancing the potential of phenomic and genomic prediction in winter wheat breeding using high-throughput phenotyping and deep learning
    Kaushal, Swas
    Gill, Harsimardeep S.
    Billah, Mohammad Maruf
    Khan, Shahid Nawaz
    Halder, Jyotirmoy
    Bernardo, Amy
    St Amand, Paul
    Bai, Guihua
    Glover, Karl
    Maimaitijiang, Maitiniyazi
    Sehgal, Sunish K.
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [28] High-Throughput Synchronous Deep RL
    Liu, Iou-Jen
    Yeh, Raymond A.
    Schwing, Alexander G.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [29] High-throughput Prediction of Nephrotoxicity in Humans
    Loo, Lit-Hsin
    Zink, Daniele
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2017, 45 (05): : 241 - 252
  • [30] Machine Learning and Deep Learning for Throughput Prediction
    Lee, Dongwon
    Lee, Joohyun
    12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2021), 2021, : 452 - 454