Image processing-based classification of pavement fatigue severity using extremely randomized trees, deep neural network, and convolutional neural network

被引:4
|
作者
Hoang, Nhat-Duc [1 ,2 ]
Tran, Van-Duc [2 ,3 ]
Tran, Xuan-Linh [1 ,2 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
[2] Duy Tan Univ, Fac Civil Engn, Danang, Vietnam
[3] Duy Tan Univ, Int Sch, Da Nang, Vietnam
关键词
Pavement fatigue severity; image processing; extremely randomized trees; deep neural network; convolutional neural network; GLOBAL SENSITIVITY-ANALYSIS; ROAD CRACK DETECTION; ASPHALT PAVEMENTS;
D O I
10.1080/10298436.2023.2201902
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fatigue failure is a major structural defect found in the asphalt pavement subjected to repeated traffic loadings. In order to establish cost-effective maintenance plans, timely detection of pavement fatigue and classification of its severity are crucial. This study aims at developing an advanced image processing method based on Gaussian steerable filters, projection integrals, and texture descriptors for automating the tasks of interest. The extremely randomized trees (ERT) and deep neural network (DNN) are used to analyze the features extracted from the aforementioned image processing methods. The performance of ERT and DNN is also benchmarked against that of the convolutional neural network. A dataset consisting of 6000 samples has been collected in Da Nang city (Vietnam) to construct and verify the proposed computer vision approaches. Experimental results supported by Wilcoxon signed-rank tests confirm that the ERT-based method has achieved the most desired classification performance with an accuracy rate > 0.93.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] A Study on Image Based Gender Classification Using Convolutional Neural Network
    Nie, Yining
    Liang, Bin
    Huang, Peng
    Ren, Wenting
    Dai, Jianrong
    ICDLT 2019: 2019 3RD INTERNATIONAL CONFERENCE ON DEEP LEARNING TECHNOLOGIES, 2019, : 81 - 84
  • [42] Fault severity classification of ball bearing using SinGAN and deep convolutional neural network
    Akhenia, P.
    Bhavsar, K.
    Panchal, J.
    Vakharia, V.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (07) : 3864 - 3877
  • [43] A Framework for Text Classification Using Evolutionary Contiguous Convolutional Neural Network and Swarm Based Deep Neural Network
    Prabhakar, Sunil Kumar
    Rajaguru, Harikumar
    So, Kwangsub
    Won, Dong-Ok
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16
  • [44] Crack Detection and Classification in Moroccan Pavement Using Convolutional Neural Network
    Hammouch, Wafae
    Chouiekh, Chaymae
    Khaissidi, Ghizlane
    Mrabti, Mostafa
    INFRASTRUCTURES, 2022, 7 (11)
  • [45] Asphalt pavement macrotexture reconstruction from monocular image based on deep convolutional neural network
    Dong, Shihao
    Han, Sen
    Wu, Chi
    Xu, Ouming
    Kong, Haiyu
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2022, 37 (13) : 1754 - 1768
  • [46] Plant Classification Using Image Processing and Neural Network
    Amlekar, Manisha M.
    Gaikwad, Ashok T.
    DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2018, VOL 2, 2019, 839 : 375 - 384
  • [47] Deep Convolutional Neural Network for SEM Image Noise Variance Classification
    Swee, Sim Kok
    Chen, Lim Choon
    Chiang, Tan Shing
    Khim, Toa Chean
    ENGINEERING LETTERS, 2023, 31 (01) : 19 - 19
  • [48] A new deep convolutional neural network for fast hyperspectral image classification
    Paoletti, M. E.
    Haut, J. M.
    Plaza, J.
    Plaza, A.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 145 : 120 - 147
  • [49] Illumination robust deep convolutional neural network for medical image classification
    Dash, Sonali
    Parida, Priyadarsan
    Mohanty, Jnyana Ranjan
    SOFT COMPUTING, 2023,
  • [50] A Modified Deep Convolutional Neural Network for Abnormal Brain Image Classification
    Hemanth, D. Jude
    Anitha, J.
    Naaji, Antoanela
    Geman, Oana
    Popescu, Daniela Elena
    Le Hoang Son
    IEEE ACCESS, 2019, 7 : 4275 - 4283