Image processing-based classification of pavement fatigue severity using extremely randomized trees, deep neural network, and convolutional neural network

被引:4
|
作者
Hoang, Nhat-Duc [1 ,2 ]
Tran, Van-Duc [2 ,3 ]
Tran, Xuan-Linh [1 ,2 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
[2] Duy Tan Univ, Fac Civil Engn, Danang, Vietnam
[3] Duy Tan Univ, Int Sch, Da Nang, Vietnam
关键词
Pavement fatigue severity; image processing; extremely randomized trees; deep neural network; convolutional neural network; GLOBAL SENSITIVITY-ANALYSIS; ROAD CRACK DETECTION; ASPHALT PAVEMENTS;
D O I
10.1080/10298436.2023.2201902
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fatigue failure is a major structural defect found in the asphalt pavement subjected to repeated traffic loadings. In order to establish cost-effective maintenance plans, timely detection of pavement fatigue and classification of its severity are crucial. This study aims at developing an advanced image processing method based on Gaussian steerable filters, projection integrals, and texture descriptors for automating the tasks of interest. The extremely randomized trees (ERT) and deep neural network (DNN) are used to analyze the features extracted from the aforementioned image processing methods. The performance of ERT and DNN is also benchmarked against that of the convolutional neural network. A dataset consisting of 6000 samples has been collected in Da Nang city (Vietnam) to construct and verify the proposed computer vision approaches. Experimental results supported by Wilcoxon signed-rank tests confirm that the ERT-based method has achieved the most desired classification performance with an accuracy rate > 0.93.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Fingerprint Classification using a Deep Convolutional Neural Network
    Pandya, Bhavesh
    Cosma, Georgina
    Alani, Ali A.
    Taherkhani, Aboozar
    Bharadi, Vinayak
    McGinnity, T. M.
    2018 4TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM2018), 2018, : 86 - 91
  • [22] Gemstone Classification Using Deep Convolutional Neural Network
    Chakraborty B.
    Mukherjee R.
    Das S.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (04) : 773 - 785
  • [23] Pathology Image Classification Using Convolutional Neural Network
    Li, Qunxian
    2015 2ND INTERNATIONAL CONFERENCE ON EDUCATION AND EDUCATION RESEARCH (EER 2015), PT 5, 2015, 9 : 331 - 335
  • [24] Advertisement Image Classification Using Convolutional Neural Network
    An Tien Vo
    Hai Son Tran
    Thai Hoang Le
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 197 - 202
  • [25] Image Classification using small Convolutional Neural Network
    Tripathi, Shyava
    Kumar, Rishi
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 483 - 487
  • [26] Gastrointestinal Image Classification based on Convolutional Neural Network
    Wang, Shuo
    Gao, Pengfei
    Peng, Hui
    2021 8TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS RESEARCH AND APPLICATIONS, ICBRA 2021, 2021, : 42 - 48
  • [27] Deep Convolutional Neural Network Feature Extraction for Berry Trees Classification
    Villaruz, Jolitte A.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (03) : 226 - 233
  • [28] A method of image classification based on convolutional neural network
    Dong, Zhe
    Jiang, Mingyang
    Pei, Zhili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 124 : 47 - 48
  • [29] Convolutional Neural Network Based Chart Image Classification
    Amara, Jihen
    Kaur, Pawandeep
    Owonibi, Michael
    Bouaziz, Bassem
    25. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2017), 2017, 2701 : 83 - 88
  • [30] Pneumonia image classification based on convolutional neural network
    Xiong, Feng
    He, Di
    Liu, Yujie
    Qi, Meijie
    Zhang, Zhoufeng
    Liu, Lixin
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2021), 2021, 12057