Base Station Dataset-Assisted Broadband Over-the-Air Aggregation for Communication-Efficient Federated Learning

被引:3
|
作者
Hong, Jun-Pyo [1 ]
Park, Sangjun [2 ,3 ]
Choi, Wan [4 ]
机构
[1] Pukyong Natl Univ, Dept Informat & Commun Engn, Busan 48513, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[3] Seoul Natl Univ, Inst New Media & Commun, Seoul 08826, South Korea
[4] Seoul Natl Univ, Inst New Media & Commun, Dept Elect & Comp Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Convergence; Power control; Training; Distortion; Data models; Computational modeling; Broadband communication; Federated learning; over-the-air aggregation; dataset of base station; optimized power control; compressed update report; MULTIPLE-ACCESS; POWER-CONTROL; CONVERGENCE; ALLOCATION;
D O I
10.1109/TWC.2023.3249252
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an over-the-air aggregation framework for federated learning (FL) in broadband wireless networks where not only edge devices but also a base station (BS) has its own local dataset. The proposed framework leverages the BS dataset to improve communication efficiency of FL by reducing the number of channel uses required for the model convergence as well as avoiding the signaling overhead incurred by power scale coordination among edge devices. We analyze the convergence to a stationary point without convexity assumption on the objective function. The analysis result reveals that the utilization of BS dataset improves the convergence rate and the update distortion caused by the limited power budget is a crucial factor hindering the model convergence. To facilitate the convergence, we develop an optimized power control method by solving the distortion minimization problem without assumptions on power scale coordination and global CSI at BS. Our simulation results validate that BS dataset is beneficial to reducing the number of channel uses for the model convergence and the developed power control method outperforms the conventional method in terms of both convergence rate and converged test accuracy. Furthermore, we identify some scenarios where the compression of local update can be helpful to reduce communication resources for model training.
引用
收藏
页码:7259 / 7272
页数:14
相关论文
共 50 条
  • [1] One-Bit Over-the-Air Aggregation for Communication-Efficient Federated Edge Learning
    Zhu, Guangxu
    Du, Yuqing
    Gunduz, Deniz
    Huang, Kaibin
    [J]. 2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [2] IRS Assisted Federated Learning: A Broadband Over-the-Air Aggregation Approach
    Zhang, Deyou
    Xiao, Ming
    Pang, Zhibo
    Wang, Lihui
    Poor, H. Vincent
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4069 - 4082
  • [3] Communication-Efficient Device Scheduling via Over-the-Air Computation for Federated Learning
    Jiang, Bingqing
    Du, Jun
    Jiang, Chunxiao
    Shi, Yuanming
    Han, Zhu
    [J]. 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 173 - 178
  • [4] Communication-Efficient Federated Learning: A Second Order Newton-Type Method With Analog Over-the-Air Aggregation
    Krouka, Mounssif
    Elgabli, Anis
    Ben Issaid, Chaouki
    Bennis, Mehdi
    [J]. IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2022, 6 (03): : 1862 - 1874
  • [5] One-Bit Over-the-Air Aggregation for Communication-Efficient Federated Edge Learning: Design and Convergence Analysis
    Zhu, Guangxu
    Du, Yuqing
    Gunduz, Deniz
    Huang, Kaibin
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (03) : 2120 - 2135
  • [6] Communication-Efficient Secure Aggregation for Federated Learning
    Ergun, Irem
    Sami, Hasin Us
    Guler, Basak
    [J]. 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3881 - 3886
  • [7] UAV-Assisted Hierarchical Aggregation for Over-the-Air Federated Learning
    Zhong, Xiangyu
    Yuan, Xiaojun
    Yang, Huiyuan
    Zhong, Chenxi
    [J]. 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 807 - 812
  • [8] Federated Learning with Autotuned Communication-Efficient Secure Aggregation
    Bonawitz, Keith
    Salehi, Fariborz
    Konecny, Jakub
    McMahan, Brendan
    Gruteser, Marco
    [J]. CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1222 - 1226
  • [9] Device Scheduling for Relay-Assisted Over-the-Air Aggregation in Federated Learning
    Zhang, Fan
    Chen, Jining
    Wang, Kunlun
    Chen, Wen
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 7412 - 7417
  • [10] Communication-Efficient Split Learning Based on Analog Communication and Over the Air Aggregation
    Krouka, Mounssif
    Elgabli, Anis
    ben Issaid, Chaouki
    Bennis, Mehdi
    [J]. 2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,