Critical and Supercritical Adams' Inequalities with Logarithmic Weights

被引:4
|
作者
Zhao, Huimin [1 ]
Zhu, Maochun [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Adams; logarithmic weight; radial functions; extremals; MOSER-TRUDINGER INEQUALITIES; EXTREMAL-FUNCTIONS; UNBOUNDED-DOMAINS; BI-LAPLACIAN; EXISTENCE;
D O I
10.1007/s00009-023-02520-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain several Adams-type inequalities with logarithmic weights on the unit ball B in R-n, where n >= 3. Firstly, we show that for any beta is an element of (0, 1), the following critical Adams' inequality sup(u is an element of W0,r2,n/2 (B,omega), parallel to u parallel to omega <= 1) integral(B) (exp) (alpha vertical bar u vertical bar n/(n-2)(1-beta) dx < infinity holds if and only if alpha <= alpha(beta) = n [(n - 2)(n/2) nV(n)](2/(n-2)(1-beta)) (1 - beta)(1/1-beta), where V-n = pi n/2/Gamma(n/2 +1) is the volume of the unit ball B in R-n, W-0,r(2,n/2) (B, omega) is the radial weighted Sobolev space under the norm parallel to u parallel to(omega) = (integral(B)vertical bar Delta u vertical bar(n/2) omega (x) dx)(2/n) with omega(x) = (log 1/vertical bar x vertical bar)(beta(n/2 -1)) or omega(x) = (log e/vertical bar x vertical bar)(beta(n/2 -1)). Secondly, we prove the following two supercritical Adams' inequalities sup(u is an element of W0,r2,n/2 (B,omega), parallel to u parallel to omega <= 1) integral(B) exp (alpha(beta) + vertical bar x vertical bar(m))vertical bar u vertical bar n/(n-2)(1-beta) dx < infinity and sup(u is an element of W0,r2,n/2 (B,omega), parallel to u parallel to omega <= 1) integral(B) exp (alpha(beta) + vertical bar u vertical bar n/(n-2)(1-beta)(+vertical bar x vertical bar m))dx < infinity, where m is some positive number. Moreover, we prove the existence of extremals for these Adams-type inequalities.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] New Orlicz variants of Hardy type inequalities with power, power-logarithmic, and power-exponential weights
    Kalmajska, Agnieszka
    Pietruska-Paluba, Katarzyna
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (06): : 2033 - 2050
  • [42] Inequalities for Generalized Logarithmic Means
    Chu, Yu-Ming
    Xia, Wei-Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [43] Noncommutative Logarithmic Sobolev Inequalities
    Jiao, Yong
    Luo, Sijie
    Zanin, Dmitriy
    Zhou, Dejian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1600, 0 (01): : 2221-1691 - 2588-9222
  • [44] Noncommutative Logarithmic Sobolev Inequalities
    Jiao, Yong
    Luo, Sijie
    Zanin, Dmitriy
    Zhou, Dejian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (11)
  • [45] Logarithmic inequalities for Fourier multipliers
    Osekowski, Adam
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (1-2) : 515 - 530
  • [46] LOGARITHMIC SOBOLEV TRACE INEQUALITIES
    Feo, Filomena
    Posteraro, Maria Rosaria
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (03) : 569 - 582
  • [47] Lectures on logarithmic Sobolev inequalities
    Guionnet, A
    Zegarlinski, B
    SEMINAIRE DE PROBABILITIES XXXVI, 2003, 1801 : 1 - 134
  • [48] Inequalities for Generalized Logarithmic Means
    Yu-Ming Chu
    Wei-Feng Xia
    Journal of Inequalities and Applications, 2009
  • [49] GENERALIZATIONS OF LOGARITHMIC SOBOLEV INEQUALITIES
    Merker, Jochen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (02): : 329 - 338
  • [50] Adams inequalities on measure spaces
    Fontana, Luigi
    Morpurgo, Carlo
    ADVANCES IN MATHEMATICS, 2011, 226 (06) : 5066 - 5119