Critical and Supercritical Adams' Inequalities with Logarithmic Weights

被引:4
|
作者
Zhao, Huimin [1 ]
Zhu, Maochun [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Adams; logarithmic weight; radial functions; extremals; MOSER-TRUDINGER INEQUALITIES; EXTREMAL-FUNCTIONS; UNBOUNDED-DOMAINS; BI-LAPLACIAN; EXISTENCE;
D O I
10.1007/s00009-023-02520-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain several Adams-type inequalities with logarithmic weights on the unit ball B in R-n, where n >= 3. Firstly, we show that for any beta is an element of (0, 1), the following critical Adams' inequality sup(u is an element of W0,r2,n/2 (B,omega), parallel to u parallel to omega <= 1) integral(B) (exp) (alpha vertical bar u vertical bar n/(n-2)(1-beta) dx < infinity holds if and only if alpha <= alpha(beta) = n [(n - 2)(n/2) nV(n)](2/(n-2)(1-beta)) (1 - beta)(1/1-beta), where V-n = pi n/2/Gamma(n/2 +1) is the volume of the unit ball B in R-n, W-0,r(2,n/2) (B, omega) is the radial weighted Sobolev space under the norm parallel to u parallel to(omega) = (integral(B)vertical bar Delta u vertical bar(n/2) omega (x) dx)(2/n) with omega(x) = (log 1/vertical bar x vertical bar)(beta(n/2 -1)) or omega(x) = (log e/vertical bar x vertical bar)(beta(n/2 -1)). Secondly, we prove the following two supercritical Adams' inequalities sup(u is an element of W0,r2,n/2 (B,omega), parallel to u parallel to omega <= 1) integral(B) exp (alpha(beta) + vertical bar x vertical bar(m))vertical bar u vertical bar n/(n-2)(1-beta) dx < infinity and sup(u is an element of W0,r2,n/2 (B,omega), parallel to u parallel to omega <= 1) integral(B) exp (alpha(beta) + vertical bar u vertical bar n/(n-2)(1-beta)(+vertical bar x vertical bar m))dx < infinity, where m is some positive number. Moreover, we prove the existence of extremals for these Adams-type inequalities.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] INTERPOLATION INEQUALITIES WITH WEIGHTS
    LIN, CS
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1986, 11 (14) : 1515 - 1538
  • [32] ON SOME INEQUALITIES WITH WEIGHTS
    丁夏畦
    罗佩珠
    Acta Mathematica Scientia, 1989, (04) : 427 - 436
  • [34] Rellich inequalities with weights
    Caldiroli, Paolo
    Musina, Roberta
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 45 (1-2) : 147 - 164
  • [35] ON SOME INEQUALITIES WITH WEIGHTS
    DING, XX
    LUO, PZ
    ACTA MATHEMATICA SCIENTIA, 1989, 9 (04) : 427 - 436
  • [36] Random permutations with logarithmic cycle weights
    Robles, Nicolas
    Zeindler, Dirk
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 1991 - 2016
  • [37] Weighted Bergman Kernels for Logarithmic Weights
    Englis, Miroslav
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (03) : 781 - 813
  • [38] Bayesian Inference for the Weights in Logarithmic Pooling
    Carvalho, Luiz M.
    Villela, Daniel A. M.
    Coelho, Flavio C.
    Bastos, Leonardo S.
    BAYESIAN ANALYSIS, 2023, 18 (01): : 223 - 251
  • [39] The logarithmic Sarnak conjecture for ergodic weights
    Frantzikinakis, Nikos
    Host, Bernard
    ANNALS OF MATHEMATICS, 2018, 187 (03) : 869 - 931
  • [40] Logarithmic inequalities for Fourier multipliers
    Adam Osȩkowski
    Mathematische Zeitschrift, 2013, 274 : 515 - 530