We formulate and prove matroid analogues of results concerning matchings in groups. A matching in an abelian group (G,+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G,+)$$\end{document} is a bijection f:A -> B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:A\rightarrow B$$\end{document} between two finite subsets A, B of G satisfying a+f(a)is not an element of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+f(a)\notin A$$\end{document} for all a is an element of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in A$$\end{document}. A group G has the matching property if for every two finite subsets A,B subset of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B \subset G$$\end{document} of the same size with 0 is not an element of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \notin B$$\end{document}, there exists a matching from A to B. In Losonczy (Adv Appl Math 20(3):385-391, 1998) it was proved that an abelian group has the matching property if and only if it is torsion-free or cyclic of prime order. Here we consider a similar question in a matroid setting. We introduce an analogous notion of matching between matroids whose ground sets are subsets of an abelian group G, and we obtain criteria for the existence of such matchings. Our tools are classical theorems in matroid theory, group theory and additive number theory.