Submodular maximization meets streaming: matchings, matroids, and more

被引:0
|
作者
Amit Chakrabarti
Sagar Kale
机构
[1] Dartmouth College,
来源
Mathematical Programming | 2015年 / 154卷
关键词
68W25 Approximation algorithms; 68W27 Online algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM), which is in turn a generalization of maximum cardinality matching. We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range—they store only O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} edges, using O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log n)$$\end{document} working memory—that achieve approximation ratios of 7.75 in a single pass and (3+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+\varepsilon )$$\end{document} in O(ε-3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon ^{-3})$$\end{document} passes respectively. The operations of these algorithms mimic those of Zelke’s and McGregor’s respective algorithms for MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general framework for MWM algorithms that allows this kind of adaptation to the broader setting of MSM. Our framework is not specific to matchings. Rather, we identify a general pattern for algorithms that maximize linear weight functions over “independent sets” and prove that such algorithms can be adapted to maximize a submodular function. The notion of independence here is very general; in particular, appealing to known weight-maximization algorithms, we obtain results for submodular maximization over hypermatchings in hypergraphs as well as independent sets in the intersection of multiple matroids.
引用
收藏
页码:225 / 247
页数:22
相关论文
共 50 条
  • [1] Submodular maximization meets streaming: matchings, matroids, and more
    Chakrabarti, Amit
    Kale, Sagar
    [J]. MATHEMATICAL PROGRAMMING, 2015, 154 (1-2) : 225 - 247
  • [2] Sequence submodular maximization meets streaming
    Yang, Ruiqi
    Xu, Dachuan
    Guo, Longkun
    Zhang, Dongmei
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (01) : 43 - 55
  • [3] Sequence submodular maximization meets streaming
    Ruiqi Yang
    Dachuan Xu
    Longkun Guo
    Dongmei Zhang
    [J]. Journal of Combinatorial Optimization, 2021, 41 : 43 - 55
  • [4] Do Less, Get More: Streaming Submodular Maximization with Subsampling
    Feldman, Moran
    Karbasi, Amin
    Kazemi, Ehsan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [5] Streaming adaptive submodular maximization*
    Tang, Shaojie
    Yuan, Jing
    [J]. THEORETICAL COMPUTER SCIENCE, 2023, 944
  • [6] Deletion Robust Submodular Maximization over Matroids
    Dutting, Paul
    Fusco, Federico
    Lattanzi, Silvio
    Norouzi-Fard, Ashkan
    Zadimoghaddam, Morteza
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [7] Faster Submodular Maximization for Several Classes of Matroids
    Henzinger, Monika
    Liu, Paul
    Vondrák, Jan
    Zheng, Da Wei
    [J]. Leibniz International Proceedings in Informatics, LIPIcs, 2023, 261
  • [8] Streaming Algorithms for Submodular Function Maximization
    Chekuri, Chandra
    Gupta, Shalmoli
    Quanrud, Kent
    [J]. AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 318 - 330
  • [9] Streaming Algorithms for Constrained Submodular Maximization
    Cui, Shuang
    Han, Kai
    Tang, Jing
    Huang, He
    Li, Xueying
    Li, Zhiyu
    [J]. PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2022, 6 (03)
  • [10] Streaming Submodular Maximization with the Chance Constraint
    Gong, Shufang
    Liu, Bin
    Fang, Qizhi
    [J]. FRONTIERS OF ALGORITHMIC WISDOM, IJTCS-FAW 2022, 2022, 13461 : 129 - 140