A Lightweight High-Resolution RS Image Road Extraction Method Combining Multi-Scale and Attention Mechanism

被引:4
|
作者
Wang, Rui [1 ]
Cai, Mingxiang [1 ]
Xia, Zixuan [2 ]
机构
[1] China Transport Telecommun & Informat Ctr, Beijing 100011, Peoples R China
[2] Heilongjiang Univ Technol, Coll Art & Architectural Engn, Jixi 158100, Peoples R China
关键词
Road extraction; deep learning; CAM; SAM; ASPP; lightweight; SEGMENTATION;
D O I
10.1109/ACCESS.2023.3313390
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Road information plays an indispensable role in human society's development. However, owing to the diversity and complexity of roads, it is difficult to obtain satisfactory road-extraction result. Some typical factors, such as discontinuity, loss of edge details, and long-time consumption, have negative impacts on obtaining accurate road information. These problems are particularly prominent during road extraction when high-resolution remote-sensing images are used. To obtain accurate road information, a novel lightweight deep learning neural network was pro-posed in this study by integrating a multiscale module and attention mechanisms. As an excellent multiscale segmentation module, the atrous spatial pyramid pooling was selected to enhance the road extraction ability of remote sensing images. In addition, an attention mechanism was employed to solve the problems of discontinuity and loss of edge details in road extraction, and MobileNet V2 was selected as the backbone of DeepLab V3+ because of its lightweight structure, which can help solve the problem of excessive training time consumption. The experimental verification was carried out on the Ottawa road dataset and the Massachusetts road dataset. Experimental results show that compared with U-Net, SegNet and MDeeplab v3+ networks, the proposed algorithm is the best in IoU, Recall, OA and Kappa. Among them, on the Ottawa road dataset, the OA and Kappa of the algorithm in this paper are 98.92 % and 95.02 %, respectively. On the Massachusetts road dataset, OA and Kappa 98.29% and 89.87%. In addition, the training time was significantly shorter than that of the other deep learning networks. The proposed method exhibited a good performance in road extraction.
引用
收藏
页码:108956 / 108966
页数:11
相关论文
共 50 条
  • [41] Road extraction from remote sensing images based on a multi-scale asymmetric dual attention mechanism
    Qu, Shenming
    Liu, Suchen
    Han, Fengyu
    Xie, Yuan
    REMOTE SENSING LETTERS, 2024, 15 (08) : 751 - 761
  • [42] Multi-scale network with attention mechanism for underwater image enhancement
    Tao, Ye
    Tang, Jinhui
    Zhao, Xinwei
    Zhou, Chen
    Wang, Chong
    Zhao, Zhonglei
    NEUROCOMPUTING, 2024, 595
  • [43] LTMSegnet: Lightweight multi-scale medical image segmentation combining Transformer and MLP
    Huang, Xin
    Tang, Hongxiang
    Ding, Yan
    Li, Yuanyuan
    Zhu, Zhiqin
    Yang, Pan
    Computers in Biology and Medicine, 2024, 183
  • [44] A multi-scale enhanced large-kernel attention transformer network for lightweight image super-resolution
    Chang, Kairong
    Jun, Sun
    Biao, Yang
    Hu, Mingzhi
    Yang, Junlong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (03)
  • [45] Harnessing multi-resolution and multi-scale attention for underwater image restoration
    Pramanick, Alik
    Sur, Arijit
    Saradhi, V. Vijaya
    VISUAL COMPUTER, 2025,
  • [46] Multi-scale Object-oriented Building Extraction Method of Tai'an City from High Resolution Image
    Li Chaokui
    Dong Xiaojiao
    Zhang Qiang
    2014 THIRD INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA 2014), 2014,
  • [47] Lightweight Attention Network for Very High-Resolution Image Semantic Segmentation
    Guan, Renchu
    Wang, Mingming
    Bruzzone, Lorenzo
    Zhao, Haishi
    Yang, Chen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] Multi-scale MAP estimation of high-resolution images
    Zhao, Shubin
    ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PROCEEDINGS, 2006, 4319 : 1059 - 1066
  • [49] High-Resolution Multi-Scale Neural Texture Synthesis
    Snelgrove, Xavier
    IGGRAPH ASIA 2017 TECHNICAL BRIEFS (SA'17), 2017,
  • [50] Crop disease recognition using attention mechanism and multi-scale lightweight network
    Wang Z.
    Ma F.
    Zhang Y.
    Zhang F.
    Ji P.
    Cao M.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 : 176 - 183